

LOCATIONS OF UNIFORM SOYBEAN TESTS, NORTHERN STATES, 1971

NORTHERN STATES

1971

RSLM 248

0

Compiled by:

R. L. Bernard and D. A. Lindahl

I

TABLE OF CONTENTS

Soybean Investigations Personnel	
Identification of Parent Strains	II
Uniform Test 00	11
Preliminary Test 0019	
Uniform Test 023	
Preliminary Test 033	
Uniform Test I	
Preliminary Test I45	
Uniform Test II	
Preliminary Test II60	
Uniform Test III	III
Preliminary Test III	
Uniform Test IV82	
Preliminary Test IV98	
Growing Conditions101	
Origin and Development of Ada, Bonus, Columbus, Harwood,	
Steele, Swift, Vansoy, Wilkin, Williams, and Wye	

IV

S. N. Brooks, Acting Branch Chief Vacancy, Soybean Investigations Leader

U. S. Regional Soybean Laboratory, Urbana, Illinois

- R. L. Cooper, Agronomist-in-Charge
- P. A. Lathouwers, Clerk-Stenographer
- D. J. Lilley, Clerk-Typist
- R. L. Warsaw, Agric. Res. Technician
- G. L. Sprau, Crops Res. Helper
- D. W. Chamberlain, Plant Pathologist
- L. E. Gray, Plant Pathologist
- L. L. Lange, Crops Res. Helper
- O. A. Krober, Chemist
- S. J. Gibbons, Phys. Sci. Technician
- V. E. Sedgwick, Phys. Sci. Technician

Lafayette, Indiana

- T. S. Abney, Plant Pathologist
- J. R. Wilcox, Geneticist
- R. J. Martin, Research Assistant
- D. L. Kell, Technician*
- P. E. Stingle, Technician*

Beltsville, Maryland

Vacancy, Agronomist

- C. Sloger, Plant Physiologist
- D. F. Weber, Microbiologist
- J. A. Wooster, Secretary
- C. E. Bass, Agric. Res. Technician
- V. L. Miller, Agric. Res. Technician
- P. D. Hull, Agric. Res. Technician
- Full-time state employee

- R. L. Bernard, Geneticist
- D. A. Lindahl, Agronomist (Res. Asst.)
- C. R. Cremeens, Agric. Res. Technician
- P. J. Amdor, Agric. Res. Technician
- N. H. Maxwell, Lab. Helper
- J. E. Harper, Plant Physiologist
- W. L. Ogren, Plant Physiologist
- R. W. Rinne, Plant Physiologist
- M. E. Hageman, Chemist
- L. Y. Marquis, Plant Physiol. (Res. Asst.)
- A. J. Maggio, Agric. Res. Technician

Ames, Iowa

- J. M. Dumleavy, Plant Pathologist
- R. G. Palmer, Geneticist
- H. Tachibana, Plant Pathologist
- R. C. Clark, Agronomist (Res. Asst.)
- J. W. Fisher, Agric. Res. Technician
- D. L. Strissel, Technician*

Columbia, Missouri

- V. D. Luedders, Agronomist
- R. D. Scherff, Plant Pathologist
- E. R. Smith, Agric. Res. Technician

Collaborators in the Northern State Agricultural Experiment Stations

W. R. Fehr Iowa: Illinois: H. H. Hadley Indiana: F. L. Patterson C. D. Nickell Kansas: Maryland: J. A. Schillinger

Michigan: T. J. Johnston Minnesota: H. W. Johnson

B. W. Kennedy

J. W. Lambert

Missouri: Nebraska:

L. A. Duclos J. H. Williams

Ohio:

A. F. Schmitthenner

P. E. Smith

South Dakota: A. O. Lunden Wisconsin: J. H. Torrie

- L. J. Anderson Canada Dept. of Agriculture Research Station Harrow, Ontario, Canada
- K. L. Athow
 Department of Botany
 and Plant Pathology
 Purdue University
 Lafayette, Indiana 47907
- R. L. Bernard, ARS, USDA U. S. Regional Soybean Lab. University of Illinois Urbana, Illinois 61801
- R. D. Brigham
 Texas A&M University
 Agricultural Research
 and Extension Center
 Lubbock, Texas 79401
- D. R. Browning Agronomy Research Center Southern Illinois University Carbondale, Illinois 62901
- R. I. Buzzell Canada Dept. of Agriculture Research Station Harrow, Ontario, Canada
- B. E. Caldwell, ARS, USDA Plant Industry Station Beltsville, Maryland 20705
- D. W. Chamberlain, ARS, USDA U. S. Regional Soybean Lab. University of Illinois Urbana, Illinois 61801
- R. C. Clark, ARS, USDA Department of Agronomy Iowa State University Ames, Iowa 50010
- R. H. Cole
 Department of Agronomy
 Penn State University
 University Park, Penn. 16802
- R. L. Cooper, ARS, USDA U. S. Regional Soybean Lab. University of Illinois Urbana, Illinois 61801
- H. W. Crittenden
 Department of Plant Pathology
 University of Delaware
 Newark, Delaware 19711

- J. D. Curtis
 Kemptville College of
 Agricultural Technology
 Kemptville, Ontario, Canada
- L. S. Donovan
 Genetics and Plant Breeding
 Research Institute
 Canada Dept. of Agriculture
 Central Experimental Farm
 Ottawa, Ontario, Canada
- L. A. Duclos University of Missouri Delta Research Center Portageville, Missouri 63873
- J. M. Dunleavy, ARS, USDA Department of Botany and Plant Pathology Iowa State University Ames, Iowa 50010
- D. B. Egli
 Department of Agronomy
 University of Kentucky
 Lexington, Kentucky 40506
- W. R. Fehr
 Department of Agronomy
 Iowa State University
 Ames, Iowa 50010
- L. A. Fitch Oregon State University Malheur Experiment Station Ontario, Oregon 97914
- J. E. Giesbrecht Canada Dept. of Agriculture Experimental Farm Morden, Manitoba, Canada
- E. E. Hartwig, ARS, USDA Delta Branch Experiment Station Stoneville, Mississippi 38776
- D. J. Hume
 Department of Crop Science
 University of Guelph
 Guelph, Ontario, Canada
- T. J. Johnston
 Department of Crop Science
 Michigan State University
 East Lansing, Michigan 48823
- J. R. Justin
 Department of Soils and Farm Crops
 Rutgers University
 New Brunswick, New Jersey 08903

- G. L. Kilgore Kansas State University Southeast Kansas Experiment Sta. Mound Valley, Kansas 67354
- O. A. Krober, ARS, USDA
 U. S. Regional Soybean Lab.
 University of Illinois
 Urbana, Illinois 61801
- J. W. Lambert
 Department of Agronomy
 University of Minnesota
 St. Paul, Minnesota 55101
- F. A. Laviolette
 Department of Botany
 and Plant Pathology
 Purdue University
 Lafayette, Indiana 47907
- D. A. Lindahl, ARS, USDA
 U. S. Regional Soybean Lab.
 University of Illinois
 Urbana, Illinois 61801
- D. A. Littlejohns
 Ridgetown College of
 Agricultural Technology
 Ridgetown, Ontario, Canada
- V. D. Luedders, ARS, USDA Department of Agronomy University of Missouri Columbia, Missouri 65201
- A. O. Lunden
 Plant Science Department
 South Dakota State University
 Brookings, South Dakota 57006
- H. A. MacDonald & W. D. Pardee Department of Plant Breeding Cornell University Ithaca, New York 14850
- R. S. Moomaw Northeast Station University of Nebraska Concord, Nebraska 68728
- C. D. Nickell
 Department of Agronomy
 Kansas State University
 Manhattan, Kansas 66502

- C. O. Rydberg
 University of Wisconsin
 Experiment Station
 Spooner, Wisconsin 54801
- J. A. Schillinger
 Department of Agronomy
 University of Maryland
 College Park, Maryland 20742
- P. E. Smith
 Department of Agronomy
 Ohio State University
 Columbus, Ohio 43210
- B. R. Stefansson
 Department of Plant Science
 University of Manitoba
 Winnipeg, Manitoba, Canada
- H. Tachibana, ARS, USDA, & L. C. Card
 Department of Botany
 and Plant Pathology
 Iowa State University
 Ames, Iowa 50010
- G. H. Tenpas University of Wisconsin Experiment Station Ashland, Wisconsin 54806
- J. H. Torrie Department of Agronomy University of Wisconsin Madison, Wisconsin 53706
- D. A. Whited
 Department of Agronomy
 North Dakota State University
 Fargo, North Dakota 58102
- J. R. Wilcox, ARS, USDA Department of Agronomy Purdue University Lafayette, Indiana 47907
- J. H. Williams
 Department of Agronomy
 University of Nebraska
 Lincoln, Nebraska 68503
- E. L. Wisk
 University Substation
 Delaware Agricultural
 Experiment Station
 Georgetown, Delaware 19947

INTRODUCTION

ntown and water meaningly discreted toward burneling but

The U. S. Regional Soybean Laboratory conducts research directed toward breeding better varieties of soybeans in cooperation with federal and state research personnel in all important soybean producing states and with research workers in two provinces in Canada. The purpose of the Uniform Soybean Tests is to evaluate critically the best of the experimental soybean lines developed by these researchers.

A test is established for each of ten maturity groups. Uniform Test 00 includes maturity Group 00 strains for the northern fringe of the present area of soybean production. Uniform Tests 0 through IV include later strains adapted to locations progressively farther south in the North Central States and areas of similar latitude. Each year new selections are added and others that have been sufficiently tested are dropped. The summary of performance of strains in Uniform Tests 00 through IV in the northern states is included in this report. The report on Uniform Tests IVS through VIII in the southern states is issued separately.

Data from the Uniform Tests form the basis for decisions on the regional release of soybean varieties. Preliminary Tests are grown at a limited number of locations throughout the region to screen the experimental strains for maturity and general agronomic performance for one year before they are entered in the Uniform Tests.

Unreleased strains in this report are not available for general distribution. For further information on them contact the originating agencies listed on page 9.

6 METHODS

Uniform Tests are usually planted in four-row plots with three replications or three-row plots with four replications and the center one or two rows are harvested. Preliminary Tests are usually planted in three-row plots (the center row harvested) with two replications. Usually 18 to 20 feet of row are planted and 16 feet harvested, to eliminate end-of-row effects. Seeds are packeted at a rate of 180 viable seeds per packet for each row.

Parentage. Parent strains other than named varieties are identified on page 12.

Generation Composited is the generation after the final single-plant selection.

Previous Testing. The number of previous years in the same Uniform Test is given, or, in the case of new entries, a reference to last year's test abbreviated UT 0 for Uniform Test 0, PT III for Preliminary Test III, etc.

<u>Yield</u> is measured after the seeds have been dried to a uniform moisture content and is recorded in bushels (60 pounds) per acre. [To convert to kilograms per are (or quintals per hectare) multiply by .6725; 1 kg/are = 1.487 bu/acre.]

Maturity is the date when 95% of the pods have ripened. Delayed leaf drop and green stems are not considered in assigning maturity. Maturity is expressed as days earlier (-) or later (+) than the average date of the reference variety. To aid in maturity group classification, one earlier and one later "tie" variety are listed on the maturity table for each Uniform and Preliminary Test except 00. Current reference and tie varieties and the maturity group limits relative to the reference varieties are:

Group	Reference	Range	Early Tie	Lațe Tie
00	Portage	-2 to +6		Clay (0)
0	Merit	-4 to +4	Morsoy (00)	Chippewa 64 (I)
I	Chippewa 64	-2 to +6	Merit (0)	Corsoy (II)
II	Corsoy	-3 to +5	Hark (I)	Wayne (III)
III	Wayne	-4 to +4	Beeson (II)	Cutler 71 (IV)
IV	Cutler 71	-4 to $+7$	Calland (III)	Hill (V)

These maturity group ranges are based on long-time means over many locations. When using data from fewer environments, the interval between reference varieties may differ from that implied above, but the division between maturity groups can be estimated in proportion to the above figures.

Lodging is rated at maturity according to the following scores:

- 1 Almost all plants erect
- 2 All plants leaning slightly or a few plants down
- 3 All plants leaning moderately (45°), or 25% to 50% of the plants down
- 4 All plants leaning considerably, or 50% to 80% of the plants down
- 5 Almost all plants down

Height is the average length in inches of plants from the ground to the tip of the main stem at the time of maturity. [To convert to centimeters, multiply by 2.54.]

<u>Seed Quality</u> is rated according to the following scores considering the amount and <u>degree</u> of wrinkling, defective seed coat (growth cracks), greenishness, and moldy or rotten seeds. (Threshing or handling damage is not considered, nor is mottling or other pigment.)

l Very good 2 Good 3 Fair 4 Poor 5 Very poor

Seed Size in grams per 100 is based on a 100 or 200-seed sample. [To convert to seeds per pound divide this into 45,359.2.]

Seed Composition is measured on samples submitted to the Laboratory. A 60 to 70-gram sample of clean seeds is prepared by taking an equal volume or weight of seeds from each replication. Protein percentage is measured using the Kjeldahl method and oil percentage is measured using nuclear magnetic resonance. These percentages are expressed on a moisture-free basis.

Descriptive Code: 1234 567, abbreviated as underlined below:

1 = Flower Color: Purple, White

2 = Pubescence Color: Tawny, Gray, Light tawny

3 = Pubescence Type: Normal, Appressed, Semi-appressed

4 = Pod Color: Brown, Tan

5 = Seed Coat Luster: Dull, Shiny, Intermediate

6 = Seed Coat Color: Yellow, Gray, Light gray, Green

7 = Hilum Color: Black, Imperfect black, Brown, Buff, Gray, Tan, Yellow; prefixes indicate Light or Dark shades, e.g., Lbf =

light buff, Dib = dark imperfect black.

Peroxidase Activity: H = high, L = low activity in seed coat.

Fluorescent Light Response: E = early flowering (about 35 days), L = late flowering (about 70 days) under 20-hour cool white fluorescent photoperiod.

Shattering is scored at a specified time after maturity and is based on estimates of the percent of open pods as follows:

1 No shattering

3 10% to 25% shattered 5 Over 50% shattered

1% to 10% shattered 4 25% to 50% shattered

Iron Chlorosis is rated from 1, no chlorosis, to 5, severe chlorosis.

Hypocotyl Elongation was measured at Ames, Iowa, on 24 seedlings after germinating for nine days at 25° C (a critical temperature for differentiating strains).

8 DISEASE

Disease reactions are listed according to "Soybean Classification Standards", March 1955, unless otherwise specified. Disease reaction is scored from 1 (healthy) to 5 (heavily infected) or in some cases as simply + (present) or o (absent). The location where the test was made is identified in the column heading, and the letter "a" or "n" signifies artificial or natural infection. Clearcut and consistent reactions are given by letter instead of number: R = resistant, S = susceptible, I = intermediate, and H = heterogeneous. Natural infection ratings are from agronomic tests in some instances and from special disease plantings in others. Absence of symptoms under natural infection does not necessarily mean high resistance.

Abbreviation	Disease	Pathogen
BB BBV BP BS	Bacterial blight Bud blight Bacterial pustule Brown spot	Pseudomonas glycinea Tobacco ringspot virus Xanthomonas phaseoli var. sojensis Septoria glycines
BSR CN DM FE ₁ , FE ₂	Brown stem rot Cyst nematode Downy mildew Frogeye race 1, 2	Cephalosporium gregatum Heterodera Elycines Peronospora manshurica Cercospora sojina
PM PR PS PSB	Powdery mildew Phytophthora rot Purple stain Pod and stem blight	Microsphaera diffusa Phytophthora sojae Cercospora kikuchii Diaporthe phaseolorum var. sojae
Pyd Pyu RK RR	Pythium root rot Pythium root rot Root knot nematode Rhizoctonia root rot	Pythium debaryanum Pythium ultimum Meloidogyne spp. Rhizoctonia solani
SB SC SMV TS	Sclerotial blight Stem canker Soybean mosaic Target spot	Sclerotium rolfsii Diaporthe phaseolorum var. caulivora Soja virus l Corynespora cassiicola
WF YMV	Wildfire Yellow mosaic	Pseudomonas tabaci Phaseolus virus 2

Ratings for BB, BP, BS, DM, FE_2 , and PM were based on leaf symptoms; those for PS on the amount of seed stain; those for BSR on percent of plants with stem browning; and those for PR on seedling rotting and/or stunting.

Experimental (i.e., unreleased) strains are identified with number and a code letter prefix. These letters indicate the originating agency as follows:

- A Iowa A.E.S. and U.S.R.S.L.
- C Purdue A.E.S. and U.S.R.S.L.
- CM Canada Dept. of Agriculture, Morden, Manitoba
- D Mississippi A.E.S. and U.S.R.S.L.
- E Michigan A.E.S. and U.S.R.S.L.
- FC Forage and Range Research Branch, U.S.D.A.
- H Ohio A.E.S. and U.S.R.S.L.
- K Kansas A.E.S. and U.S.R.S.L.
- L Illinois A.E.S. and U.S.R.S.L.
- M Minnesota A.E.S. and U.S.R.S.L.
- Md Maryland A.E.S. and U.S.R.S.L.
- ND North Dakota A.E.S. and U.S.R.S.L.
- O Central Experiment Farm, Ottawa, Ontario
- O Research Station, Harrow, Ontario
- OAC University of Guelph, Guelph, Ontario
- PI Plant Introduction Investigations, New Crops Research Branch, U.S.D.A.
- S Missouri A.E.S. and U.S.R.S.L.
- SD South Dakota A.E.S. and U.S.R.S.L.
- SL Two or more state experiment stations and U.S.R.S.L.
- T Soybean Genetic Type Collection, U.S.R.S.L.
- U Nebraska A.E.S. and U.S.R.S.L.
- UD Delaware A.E.S. and U.S.R.S.L.
- UM University of Manitoba, Winnipeg, Manitoba
- W Wisconsin A.E.S. and U.S.R.S.L.

		Tests	Uniform Tests					Preliminary						
Locati	on*	Conducted by	00	0	I	II	III	IV	00	0	I	II	III	IV
N. Y.	Aurora	H. A. MacDonald & W. D. Pardee		x	х	x								
Pa.	University Park Landisville	R. H. Cole				x	x x	x						
N. J.	Middlebush Adelphia	J. R. Justin				<u>x</u>	<u>×</u>							
Del.	Centerton Georgetown I	E. L. Wisk						$\frac{x}{x}$						x
Md.	Taneytown B Clarksville	J. A. Schillinger					$\frac{x}{x}$	×					x	x
	Queenstown "B	11					<u>x</u> <u>x</u> <u>x</u>	×					_	
	Quantico B	"					x	x						
	Queenstown	B. E. Caldwell & V. L. Miller						×						
0	Linkwood	"						x						<u>x</u>
Ont.	Ottawa Kemptville	L. S. Donovan J. D. Curtis	$\frac{x}{x}$	x					$\frac{x}{x}$	x				
	Elora	D. J. Hume	×						x					
	Ridgetown	D. A. Littlejohns	-	$\frac{x}{x}$	<u>x</u> '	х				$\frac{x}{x}$	x			
	Harrow	L. J. Anderson			X	x						$\frac{x}{x}$		
Ohio	Hoytville Wooster	P. E. Smith		x	x	x	x				<u>x</u>	×		
	Columbus	11			×	×	×	v					x	
Mich.	Saginaw	T. J. Johnston		x	$\frac{x}{x}$	$\frac{x}{x}$	^	<u>x</u>		x	x		^	
	Petersburg	11		_	\overline{x}	x		1						
Ind.	Knox	J. R. Wilcox			x	$\frac{x}{x}$						x		
	Bluffton Lafayette	"			v		X	v				v	v	
	Greenfield	11			x	$\frac{x}{x}$	$\frac{x}{x}$	x				×	<u>×</u>	
	Worthington	11				x	x	x					x	x
	Evansville	11					\overline{x}							x
Ky.	Henderson	D. B. Egli					<u>x</u>	$\frac{x}{x}$						
Wis.	Ashland Spooner	G. H. Tenpas C. O. Rydberg	×	v					×	v				
	Durand	J. H. Torrie		$\frac{x}{x}$	x					<u>x</u>				
	Madison	11				x					x	x		
I11.	Dekalb	R. L. Cooper			$\frac{x}{x}$	$\frac{x}{x}$					$\frac{x}{x}$			
	Pontiac Urbana	D I Damend C										x		
	Girard	R. L. Bernard & D. A. Lindahl			×	$\frac{x}{y}$	$\frac{x}{y}$	$\frac{x}{x}$				<u>x</u>	$\frac{x}{x}$	
	Edgewood	n Dindani				$\frac{x}{x}$	$\frac{x}{x}$	$\frac{\hat{x}}{x}$					^	
	Belleville	11				x	×	x						x
	Eldorado	"				$\frac{x}{x}$	$\frac{x}{x}$	$\frac{x}{x}$						×
M:	Carbondale	D. R. Browning				x	X	x						
Minn.	Crookston Morris	J. W. Lambert	$\frac{x}{x}$						×					
	Rosemount	11	×	<u>x</u>					×	x				
	Lamberton	11	"		x	×			Î	9	x			
	Waseca	II .			$\frac{x}{x}$	×		4						
Iowa	Sutherland	R. C. Clark &	1			x					$\frac{x}{x}$			
	Kanawha Waverly	W. R. Fehr			x	<u>x</u>					x	X		

Locatio	on*		Tests Conducted by			Uniform Tests OO O I II III IV				Pre 00	limi O			Test		
Iowa	Clarence	F		Clark &				х								
	Sloan		W.	R. Fehr				x								
	Ames			11				x						<u>x</u>		
	Stuart			11					х	×					x	
	Ottumwa			11	1				x	x					x	
	Red Oak			11					<u>x</u>	$\frac{x}{0}$					_	
Mo.	Spickard	7	7. D.	Luedders			x	x	x							
	Columbia			11			<u>x</u>	x	x	×				x	x	x
	Mt. Vernon			11			_	$\frac{x}{x}$	$\frac{x}{x}$	×				_	_	_
	Portageville	e I	. A.	Duclos						x						x
Man.	Portage la l				×					-	×					
	Winnipeg			Stefansson	 x					1.8	_					
	Morden			Giesbrecht	0						0					
N. D.	Fargo			Whited	×	v	_					v				
. D.	Oakes I	1). A.	MILLEG	^	<u>x</u>	0				×	<u>×</u>				
C D					1	х	x									
S. D.	Revillo	F	A. O.	Lunden	1	<u>x</u>	X					x				
	Brookings			"	1		<u>x</u>	x					X			
	Centerville							×						X		
	Elk Point			11					x							
Neb.	Concord			Moomaw			x	x	\overline{x}							
	Mead I	Č	J. H.	Williams	1		×	x	x	<u>x</u>			X	×	x	
Kansas	Powhattan	(C. D.	Nickell	i		_	$\frac{x}{x}$	$\frac{x}{x}$	×						
	Manhattan			11	1			_	\bar{x}	$\frac{-}{x}$						
	" I			11	1				x	×					x	x
	Ottawa			11					\bar{x}	$\frac{-}{x}$					_	$\frac{x}{x}$
	Columbus	(5. I	Kilgore					x	х						
Ore.	Ontario I			Fitch	×	x										
NT - F				J-+- / \		כו	26	40	36	32	8	-			11	11
	locations w				11											
	locations with seed compo				11		12	18	17	17	5	4	6	6	6	6
								18	17	17	5	4	В		6	Ь
			lata		7	7	12		17	17	5	4 U'			6 P7	
No. wi		osition o	lata	(<u>x</u>)	7	7	12 Tes	ts		17		U'	T V		P7	<u>Γ</u>
No. wi	th seed compo	osition o	Dis	(<u>x</u>)	7	7	Tes	ts W.	Cri			U'	T		PT	<u>Γ</u>
No. wi	Georgetown Lafayette	PSB, PS FE ₂ , PR, BS	Dis BSR	(<u>x</u>) ease and Shat	7	7	Tes H. K.	w. L.	Cri Ath	ttend	len	U'	T V		P7 IV 00-	<u>Γ</u>
No. wi	Georgetown Lafayette	PSB, PS FE ₂ , PR, BS	Dis BSR	(<u>x</u>) ease and Shat	7	7	Tes H. K. F.	W. L.	Cri Ath La	ttend ow &	len ette	U' 00- I-	T V -IV	,	P7 IV 00-	r / -IV
No. wi	Georgetown Lafayette Urbana	PSB, PS FE ₂ , PR, BS BSR, BB ⁿ¹	Dis BSR	(<u>x</u>) ease and Shat	7	7	Tes H. K. F.	W. L. A.	Cri Ath La Cha	ttend ow & viole	len ette	00- I- 00- U'	T V -IV	,	P7 IV 00- I- 00-	Γ / -IV -IV
No. wi	Georgetown Lafayette Urbana Urbana	PSB, PS FE ₂ , PR, BS BSR, BB ⁿ¹ BPa2	Dis BSR BSR BP	(<u>x</u>) ease and Shat	7	7	Tes H. K. F. D.	W. L. W. L.	Cri Ath La Cha Ber	ttend ow & viole mberl nard	len ette	00- I- 00- U'	T V -IV -IV -IV	,	P7 IV 00- I- 00-	/ -IV -IV -IV
No. wi	Georgetown Lafayette Urbana Urbana Crookston	PSB, PS FE ₂ , PR, BS BSR, BB ^{nl} BPa ² Fe chlore	Dis BSR BSR BP	(<u>x</u>) ease and Shat	7	7	Tes H. K. F. D.	W. L. W. L.	Cri Ath La Cha Ber	ttend ow & viole mberl	len ette	U'' 11 00-	T V -IV -IV -IV	,	P7 IV 00- I- 00- I-	T -IV -IV -IV -IV
Del. Ind. Ill.	Georgetown Lafayette "Urbana Urbana Crookston St. Paul	PSB, PS FE2, PR, BS BSR, BB ⁿ¹ BPa2 Fe chlore BSR	Dis BSR BSR BP	(<u>x</u>) ease and Shat	7	7	Tes H. K. F. D. R. J.	W. L. A. W. L.	Cri Ath La Cha Ber Lam	ttend ow & viole mberl nard bert	len ette	U' I' 00-	T V -IV -IV -IV		P7 IV 00- I- 00- I-	T -IV -IV -IV -IV
Del. Ind. Ill.	Georgetown Lafayette " Urbana Urbana Crookston St. Paul Ames	PSB, PS FE2, PR, BS BSR, BBn1 BPa2 Fe chlore BSR BBa, BP,	Dis BSR BSR BP DSis BS	(<u>x</u>) ease and Shat	7	ng	Tes H. K. F. D. R. J.	W. L. W. L. W.	Cri Ath La Cha Ber Lam	ttendow & violemberlnard bert	len ette .ain	U'	T V -IV -IV -IV -IV		P7 IV 00- I- 00- I-	T -IV -IV -IV -IV
Del. Ind. Ill.	Georgetown Lafayette " Urbana Urbana Crookston St. Paul Ames	PSB, PS FE2, PR, BS BSR, BB ⁿ¹ BPa2 Fe chlore BSR	Dis BSR BSR BP DSis BS	(<u>x</u>) ease and Shat	7	ng	Tes H. K. F. D. R. J.	W. L. W. L. W.	Cri Ath La Cha Ber Lam "	ttendow & viole mberl nard bert leavy	len ette .ain	U'	T V -IV -IV -IV		P7 IV 00- I- 00- I-	T -IV -IV -IV -IV
Del. Ind. Ill.	Georgetown Lafayette " Urbana Urbana Crookston St. Paul Ames Ames	PSB, PS FE2, PR, BS BSR, BB ⁿ¹ BPa2 Fe chlore BSR BBa, BP, BBn, PR,	Dis BSR BSR BS BS Fe	ease and Shat	7	7 .ng	Tes H. K. D. R. J.	W. L. W. L. W. Tac	Cri Ath La Cha Ber Lam '' Dun hib	ttendow & violemberlnard bert leavy ana & rd	len ette .ain	U' 11 00- 1- 00- 00- 00-	T V - I V - I V - I V - I V		P7 IV 00- I- 00- I- 00-	/ -IV -IV -IV -IV
Del. Ind. Ill. Minn.	Georgetown Lafayette "" Urbana Urbana Crookston St. Paul Ames Ames	PSB, PS FE2, PR, BS BSR, BBn1 BPa2 Fe chlore BSR BBa, BP, BBn, PR, Hypocotyl	Dis BSR BSR BS BS Fe	ease and Shat	7	7 .ng	Tes H. K. F. D. R. J. H.	W. A. W. L. W. Tac	Cri Ath La Cha Ber Lam '' Dun hib Ca Feh	ttendow & viole mberl nard bert leavy ana & rd	len ette .ain	U' 1' 00-	V - IV - IV - IV - IV - IV		P7 IV 00- I- 00- I- 00-	// -IV -IV -IV)
Del. Ind. Ill. Minn.	Georgetown Lafayette "" Urbana Urbana Crookston St. Paul Ames Ames Ames Stoneville	PSB, PS FE2, PR, BS BSR, BBn1 BPa2 Fe chlore BSR BBa, BP, BBn, PR, Hypocotyl PR	Dis BSR L, BP DSis BS Fe	ease and Shat	7	7 .ng	Tes H. K. F. D. R. J. H.	W. A. W. L. W. Tac	Cri Ath La Cha Ber Lam Dun Chib Ca Feh	ttendow & violemberlnard bert leavy ana & rd	len ette .ain	U' 11 00- 1- 00- 00- 00- 11-	T V -IV -IV -IV -IV -IV		P7 IV 00- I- 00- 0 11-	r // -IV -IV -IV
Del. Ind. Ill. Minn.	Georgetown Lafayette "Urbana Urbana Crookston St. Paul Ames Ames Stoneville	PSB, PS FE2, PR, BS BSR, BBn1 BPa2 Fe chlore BSR BBa, BP, BBn, PR, Hypocotyl PR Shatterin	Dis BSR BSR BP DSis BS Fe L elo	ease and Shat	7	7 .ng	Tes H. K. F. D. R. J. H. L. W.	W. L. A. W. L. W. Tac	Cri Ath La Cha Ber Lam Dun Chib Ca Feh Har	ttendow & viole mberl nard bert leavy ana & rd r twig	len ette .ain	U' I' 00-	T V - I V - I V - I V - I V - I V - I V		P7 IV 00- I- 00 0- II- II- II-	
Del. Ind. Ill. Minn. Iowa	Georgetown Lafayette "Urbana Urbana Crookston St. Paul Ames Ames Ames Stoneville "Manhattan	PSB, PS FE2, PR, BS BSR, BBn1 BPa2 Fe chlore BSR BBa, BP, BBn, PR, Hypocotyl PR Shatterin Shatterin	Dis BSR L, BP DSIS BS Fe L elo	ease and Shat	7	7 .ng	Tes H. K. F. D. R. J. H. L. W. E.	W. L. W. W. Tac C. R. E.	Cri Ath La Cha Ber Lam " Dun chib Ca Feh Har " Nic	ttendow & viole mberl nard bert leavy ana & rd r twig kell	len ette .ain	U' I' 00-	T V - I V - I V - I V - I V - I V - I V		P7 IV 00- I- 00- 0 11-	
Del. Ind. Ill. Minn. Iowa	Georgetown Lafayette "Urbana Urbana Crookston St. Paul Ames Ames Ames Stoneville "Manhattan Lubbock	PSB, PS FE2, PR, BS BSR, BBn1 BPa2 Fe chlore BSR BBa, BP, BBn, PR, Hypocotyl PR Shatterin Shatterin	Dis BSR BSR BS Fe L elo	ease and Shat	7	7 .ng	Tes H. K. F. D. R. J. H. L. W. E.	W. L. W. L. W. Taco	Cri Ath La Cha Ber Lam hib Ca Feh Har '' Nic Bri	ttendow & viole mberl nard bert leavy ana & rd rtwig kell gham	len ette .ain	U' I' 000- II - 000- III - 000- IIII - 000- III - 000-	T V - I V - I V - I V - I V - I V - I V		P7 IV 00- I- 00 0- II- II- II-	

^{*} B = after barley, I = irrigated

Strain	Parentage or Source	Uniform Testing
ChipRps rxp(Ll0)	PR and BP resistant Chippewa BC	65 I
"-Ir Rps rxp(L16)	PR and BP resistant yellow hilum Chippewa BC	67 PI
	PR and BP resistant yellow hilum Clark BC	65-66 IV
Kent-Rps rxp(SL5)	PR and BP resistant Kent BC	65 IV
Wayne-Rps(L15)	PR resistant Wayne BC	67-68 III
Wayne-Ir Rps	PR resistant yellow hilum Wayne BC	(69 PIII)
II-54 - 139	Renville x Capital	
II - 54-240	(Lincoln ² x Richland) x Korean	
AX50F58-2	Hawkeye x Clark	61-62 II
AX56P64-1	Adams x Harosoy, progenitor of Amsoy	61-63 II
C1069	Lincoln x Ogden. From same F ₃ plant as Kent	54-58 IV
C1079	Lincoln x Ogden. From same F ₃ plant as Kent	54-56 IV
C1128	Wabash x Hawkeye	54-58 II,58,62 III
C1243	PI 68.521 x Wabash	60 PII
C1253	Blackhawk x Harosoy. PR resistant	64 PII
C1265	Harosoy x Cl079	62-63 II
C1266	Harosoy x Cl079	62-63 IV
FC 31.122	From E. R. Sheffel, Bayfield, Wis., in 1941	
L2	Harosoy 63 x (Harosoy 6 x S54-1207)	62-66 II
.4	$(C1128^6 \times S54-1207) \times [C1128^6 \times sel. (Monroe)]$	
	x Lincoln)]	62 III
46-1503	I t w from Lincoln ² x Richland	49-50 III
48-7289	Seneca x Richland	50-51 II
L49-4091	$(F_3 \text{ Lincoln}^2 \times \text{Richland}) \times (F_1 \text{ Lincoln} \times \text{CNS})$	
L57-0034	Clark x Adams	60-62 IV
410	Lincoln ² x Richland	49-51 I
M319	Lincoln x Hawkeye	58-61 I
1323	Hawkeye x Capital	
1372	M10 x PI 180.501	61 I
1387	Renville x Capital	63 00,64 0
1402	Renville x Capital	63-64 II
1406	Harosoy x Norchief	64-65 0
) - 52-903	Strain 753-1 from Sven A. Holmberg, Norrkop-	04 03 0
7-32-903	ing, Sweden, same as PI 194.654	60-61 00
)-57 - 2921	Blackhawk x Capital	60-1 0, 62-5 00
PI 68.521	RS No. 205 from Chinese Eastern Ry., Manchur-	
1 00.321	ia in 1926	
°I 84.666-1	Unknown (unlike original from Korea in 1930)	
°I 91.110-1	Collected in northern Manchuria in 1931	
PI 132.207	No. D14 from Dr. L. Koch, Zeist, Netherlands,	
1 132.207	in 1939	
PI 180.501	Strain No. 18 from a Manchurian strain x PI	
	54.616 from Frankfurt, Germany, in 1949	
°I 248.406	Osijecka, from Yugoslavia in 1958	
°I 261.475	Shika No. 1 from Manchuria via Hyogo Agricul-	
SER 1007	tural College, Japan, in 1959	57 III
354 - 1207	Hawkeye x (L49-4091 x sib of Clark)	3/ 111
G62X30:1	(Clark ² x L46-1503) x (Clark 63 ³ x Kanrich)	
15.7 000h	I t w, DM resistant	 60 T
N57-2334	Seneca x Chippewa	62 I

Str	ain	Parentage	Generation Composited	Previous Testing*
1.	Altona Flambeau	0-52-903(Holmberg 753-1) x Flambeau Introduction from Russia	F ₅	7 13
3.	Morsoy	Acme x L48-7289(Seneca x Richland)	F ₇	3
4. 5.	Norman Portage	Acme x Hardome Acme x Comet	F 5	6 11
6.	CM119	Acme x Blackhawk	F ₂ 5	P 00
7.	CM121	Acme x Blackhawk	F_{7}^{\prime}	P 00
8.	CM127	Acme x Blackhawk	F,	P 00
9.	Ada(M61-60)	Merit x Norman	F ₅	1

^{*} Number of years in this test or name of last year's test.

This test consisted mostly of released varieties this year. The long-time means (four and six years) show a small positive regression of yield on maturity, with the older variety Flambeau lagging below its expected yield. The newly named Ada variety performed similarly to the slightly earlier Norman based on a two-year mean and in addition carries resistance to phytophthora rot and to iron chlorosis (1970 data). The three CM strains were advanced from last year's preliminary test. They included the top two entries in regional mean yield this year and appear to merit further testing.

Regional Summary

			Matu-	Lodg-		Seed	Seed	Seed Compo	sition
Strain	Yield	Rank	rity	ing	Height	Quality	Size	Protein	Oil
				197					
No. of Tests	10	10	8	10	10	9	8	6	6
Altona	30.9	4	+ 8.1	2.3	29	2.5	19.1	42.4	19.3
Flambeau	29.8	7	+13.3	3.3	32	2.5	17.3	43.1	18.3
Morsoy	31.1	3	+ 6.4	2.5	30	2.8	18.9	39.7	21.3
Norman	29.9	6	+ 4.0	1.8	27	2.3	16.8	41.8	19.1
Portage	27.8	9	9-9†	1.3	26	2.8	17.2	40.8	19.5
CM119	31.2	2	+ 4.3	2.2	29	2.7	17.8	41.0	19.8
CM121	31.6	1	+ 4.6	1.6	28	2.7	18.2	41.0	20.2
CM127	30.3	5	+ 6.1	1.7	27	2.5	16.6	40.0	20.7
Ada	29.7	8	+ 7.4	2.0	28	2.1	17.7	42.2	18.9
† 115 days af	ter plan	nting							
			1970	-71, 2-	year mean	1			
No. of Tests	20	20	18	20	20	18	16	12	12
Altona	31.5	1	+ 6.5	2.4	30	2.2	18.9	42.2	19.8
Flambeau	30.2	3	+11.4	3.4	32	2.5	17.2	43.0	18.6
Morsoy	30.4	2	+ 6.8	2.7	31	2.7	19.5	39.7	21.6
Norman	29.9	4	+ 3.4	2.1	29	2.0	17.2	41.5	19.9
Portage	28.9	6	9-9†	1.6	27	2.4	18.0	40.8	20.0
Ada	29.7	5	+ 5.7	2.2	30	1.8	17.6	41.9	19.5
† 111 days af	ter plan	nting							
			1968	3-71, 4-	year mean	1			
No. of Tests	39	39	37	33	37	36	32	23	23
Altona	31.1	1	+ 4.2	2.5	29	2.2	19.0	41.1	20.1
Flambeau	30.5	3	+ 7.8	3.5	31	2.2	17.2	41.9	18.9
Morsoy	30.7	2	+ 6.0	2.8	30	2.7	21.1	38.9	21.7
Norman	30.1	4	+ 2.8	2.2	29	1.9	17.6	40.9	20.0
Portage	29.2	5	9-11+	1.5	27	2.4	18.4	40.1	20.0
† 114 days af	ter plan	nting							
		<u></u>			year mean				
No. of Tests	59	59	55	47	57	52	48	33	33
Altona	30.1	1	+ 4.5	2.4	29	2.3	18.5	40.7	20.1
Flambeau	29.9	2	+ 7.6	3.3	30	2.3	16.8	41.5	18.9
Momman	20 11	2	+ 2 7	2 2	20	2 0	17 0	110 0	20 0

2.2

1.5

29

27

2.0

2.3

17.3

18.0

40.3

39.5

20.0

20.1

29.4

28.2

Norman

Portage

3

+ 2.7

9-13+

^{† 113} days after planting

Disease Data

		BB		В	P	BS		BSR		FE ₂	PM	P	R
	Urb.	A	mes	Urb.	Ames	Ames	Laf.	Urb.	St. Paul	Laf.	Har.	Laf.	Ames
Strain	Ill.	I	owa	Ill.	Iowa	Iowa	Ind.	I11.	Minn.	Ind.	Ont.	Ind.	Iowa
	nl	n	a	al	n	n	n %	n %	n %	a	a	a	a
Altona	1	2	4.5	4	5	4	7	50	80	3	R	R	Н
Flambeau	1	2	4	4	5	3	6	40	75	4	R	S	S
Morsoy	1	3	3.5	3	5	3	29	60	75	4	R	S	S
Norman	3	3	3.5	4	5	3	5	40	35	5	S	S	S
Portage	2	3	5	3	5	2.5	43	50	80	4	S	S	S
CM119	1	3	4	4	5	2	22	50	75	4	R	R	R
CM121	1	3	4	4	5	3	47	60	50	4	R	H	S
CM127	1	4	4.5	4	5	3.5	48	40	85	5	Н	S	S
Ada	1	3	4.5	4	5	2.5	25	30	60	5	R	Н	R

Descriptive and Shattering Data

Strain	Descriptiv		Fluor- escent	Shatt Kansa Manha	Hypo- cotyl Length	
	Code	dase	Light	2 wk.	4 wk.	cm
Altona	PTNBr SYB1	Н	E	1	4	20
Flambeau	PTNBr SYB1	Н	E	1	4	19
Morsoy	PGNBr DYLi	.b L	E	2	5	21
Norman	PGNBr SYY	Н	E	1	4	24
Portage	PGNBr D+SY	YY H	E	5	5	23
CM119	PGNBr SYG	Н	E	2	5	19
CM121	PGNBr DYG	Н	E	3	5	23
CM127	PGNBr DYIL	L	E	3	5	23
Ada	WGNBr SYY	L	E	1	4	22

Manitoba

									Mar	nitoba			
			Ontario)	Wis.		nneso		Portage				Oregon
Strain	Mean	Ot-					-Mor-			Winn-			Ontario
		tawa	ville	Elora	land	ston	ris 1	nount	Prairie	ipeg	den	Fargo	I
1	0 Tes	ts			1	971 YI	ELD (ou/a)					*
41 + on o	20 0	22 0	21 6	11.1 6	20.2	211 11	22.7	37.5	20.0	24.9		24.1	56.7
Altona Flambeau		32.0	31.6 29.4		29.3 28.7			45.1	29.9 25.1	19.2		23.9	59.7
		35.8	30.8		31.0			46.3	26.1	25.7		22.6	63.2
Morsoy Norman		38.8	35.9		27.9			33.8	25.7	25.1		20.9	63.1
Portage		31.9	21.3		28.1			35.3	25.8	27.5		23.5	53.7
CM119		32.2	31.7		28.1			40.1	29.1	27.3		25.8	52.2
CM121		37.6	28.9		28.9			40.6	28.6	27.9		24.9	52.9
CM127		35.3	29.1		29.3			40.4	28.5	28.9		21.0	52.2
Ada	29.7		30.8		29.1			38.0	25.7	25.2		24.0	57.4
C.V. (%)		8.9	18.0	7.2	7.6				7.5	10.7		0.6	7.0
L.S.D. (5%)	n.s.	n.s.	4.3	7.6 3.2	5.3 2.0	5.5 2.7	7.7 5.8	7.5 3.0	12.7 4.8		9.6 3.3	6.8
Row Sp.		34	21	12	24	28	30	30	36	24		24	20
Rows/Plot		3	4	4	1	4	4	4	3	3		3	4
Reps	•	4	4	4	4	3	3	3	4	4		4	3
						YIEL	D RANI	<u><</u>					*
Altona	4	8	3	4	2	4	1	7	1	8		3	5
Flambeau	7	6	6	5	6	9	2	2	9	9		5	3
Morsoy	3	3	4	2	1	6	4	1	5	5		7	1
Norman	6	1	1	3	9	8	6	9	7	7		9	2
Portage	9	9	9	8	7	7	9	8	6	3		6	6
CM119	2	7	2	7	7	1	3	5	2	4		1	8
CM121	1	2	8	1	5	2	5	3	3	2		2	7
CM127	5	4	7	6	2	5	8	4	4	1		8	8
Ada	8	5	4	9	4	3	7	6	7	6		4	4
35	Test	S		19	968-7		EAR MI	CAN Y	IELD				
				a		68-69 71	,	Ъ		70-71	68-70	69-7	L
Altona	31.1	42.2	34.8	38.8	24.7	22.2	29.3	38.6	32.4	23.6	26.7	20.4	
Flambeau	30.5	42.6	34.4			21.8	28.9		26.9	18.3	27.2	19.0	
Morsoy	30.7	42.4	31.7			21.6	26.6		31.4	24.4	29.9	19.7	
Norman	30.1	44.7	41.2		22.2		25.2		30.0	23.9	25.7	17.8	
Portage	29.8	39.7	34.7	36.8	23.5	20.9	24.2	36.4	29.3	26.5	24.0	18.8	
						YIEL	D RANH	<u> </u>					
Altona	1	4	2	1	3	1	1	3	1	4	3	1	
Flambeau	3	2	4	2	1	2	2	2	5	5	2	3	
Morsoy	2	3	5	4	2	3	3	ī	2	2	1	2	
Norman	4	1	1	5	5	5	4	5	3	3	4	5	
.	-	-	•	_					•	•	-	5	

^{*} Not included in the mean

Portage

a Guelph in 1968

b St. Paul in 1968-70

									Manito	oba		
50.00			Ontario		Wis.		neso		Portage			Oregon
Strain	Mean	Ot-	Kempt.			Crook-				Winn-		Ontari
		tawa	ville	Elora	land	ston	ris	mount	Prairie	ipeg	Fargo	I
	8 Test	ts 🐅		MATUR	ITY (r	elati	ve da	te)				*
Altona	+ 8.1	-6	+15	+14	0		+ 8	+ 9	+ 5	+ 6	+ 8	+ 1
Flambeau	+13.3		+20	+20	+2		+10	+12	+10	+19	+13	+ 8
Morsoy	+ 6.4		+10	+13	+3		+ 7	+ 8	+ 2	+ 5	+ 3	+10
Norman	+ 4.0	-9	+ 7	+ 7	+3		+ 5	+ 4	+ 1	+ 3	+ 2	+ 1
Portage†	9-9	9-30	9-20	9-10	10-6		8-26	8-29	9-13	9-7	8-25	8-28
CM119	+ 4.3	0	+ 6	+ 8	+3		+ 5	+ 4	+ 1	+ 4	+ 3	+ 8
CM121	+ 4.6		+ 8	+10	+2		+ 6	+ 4	0	+ 3	+ 4	+ 8
CM127	+ 6.1	-5	+ 9	+11	+3		+ 7	+ 5	0	+ 4	+10	+ 8
Ada	+ 7.4	-3	+10	+12	+4		+ 6	+ 6	+ 2	+11	+ 8	+ 7
Clay (0)			+10				+14	+14			+17	+10
Date Planted	5-17		5-21	5-19	6-4			5-22	5-13	5-6	5-7	5-1
†Days to mat.	115	133	122	114	124	1	106	97	123	124	110	119
	0 Test	ts]	LODGIN	IG (sc	ore)					
				_								*
Altona	2.3	1.8	2	3.9	1	1.7	2.0		4	2.2	1	3.2
Flambeau	3.3	2.5	3	4.9	2	2.0	3.3		5	3.8	2	4.0
Morsoy	2.5	3.3	3	4.3	1	1.0	2.7		3	2.0	2	4.5
Norman	1.8	1.8	3	2.8	1	1.0	1.0	2.0	3	1.8	1	4.5
Portage	1.3	1.3	2	1.9	1	1.0	1.0	1.0	1	1.8	1	4.0
CM119	2.2	3.0	2	3.1	1	1.0	2.0	2.7	3	2.5	2	4.0
CM121	1.6	1.5	1	2.5	1	1.0	1.3	2.3	2	2.0	1	4.0
CM127	1.7	1.3	2	3.3	1	1.3	1.0	2.3	2	1.8	1	4.8
Ada	2.0	2.0	2	3.8	1	1.0	1.3	3 2.3	3	2.8	1	5.0
]	LO Test	ts		FLA	NT HEI	GHT (inche	s)				*
Altona	29	32	32	35	25	18	25	31	28	34	26	34
Flambeau	32	32	37	40	25	20	29	31	30	43	28	48
Morsoy	30	34	35	39	24	18	28	32	26	38	28	45
Norman	27	33	35	34	24	17	23	28	22	30	25	43
Portage	26	33	28	33	23	16	23	28	22	32	24	38
CM119	29	34	32	35	23	20	27	33	23	34	26	34
CM121	28	31	30	36	21	18	27		20	32	27	34
CM127	27	31	34	33	23	19	24		22	29	24	36
	28	31	37	39	27	18	26		22	27	25	50

^{*} Not included in the mean

									Manito	ba		•
			Ontari		Wis.		nnesot		Portage			Oregon
Strain	Mean		Kempt-		Ash-	Crook-				Winn-		Ontario
		tawa	ville	Elora	land	ston	ris	mount	Prairie	ipeg	Fargo	I
	9 Test	ts			SEED Q	UALITY	(score	<u>e)</u>				*
Altona	2.5	2	3	2	2	2.7	3.3	3.3	2.0		2	1.5
Flambeau		2	2	2	2	3.7	2.7	3.7	1.0		3	2.5
Morsoy	2.8	3	3	3	2	3.5	3.3	3.7	2.0		2	4.0
Norman	2.3	2	2	2	3	2.7	3.0	2.7	1.0		2	2.5
Portage	2.8	2	3	4	3	3.0	3.0	3.3	1.7		2	1.5
CM119	2.7	3	2	3	2	3.5	2.7	3.0	3.5		2	3.5
					2	3.3					2	3.5
CM121	2.7	2	2	3			3.3	3.3	3.0			
CM127	2.5	1	3	2	3	2.7	3.7	3.3	1.5		2	1.5
Ada —————	2.1	2	2	2	2	2.7	2.7	3.0	1.5		1	2.5
	8 Test	s			SEED	SIZE (g/100	<u>)</u>				*
Altona	19.1	23.9	18.0	19.5		21.6	17.0	18.3	19.8		15.0	22.5
Flambeau	17.3	21.9	16.4	17.8		19.6	14.3	17.1	18.6		12.4	20.0
Morsoy	18.9	23.5	18.4	17.6		23.2	15.5	18.9	19.5		14.2	24.0
Norman	16.8	22.3	3 17.0	15.8		19.2	13.4	15.9	18.6		11.8	23.5
Portage	17.2	22.9	15.7	15.8		19.4	14.6	16.8	19.3		13.1	22.0
CM119	17.8	22.6	18.4	17.3		18.0	15.3	18.0	18.2		14.9	22.0
CM121	18.2		18.4	17.7		17.9	15.7	17.9	18.6		15.1	22.5
CM127	16.6		7 17.5	16.3		16.3	14.7	15.6	18.2		12.7	21.0
Ada	17.7		18.5	16.4		21.2	13.8	17.2	19.3		13.1	21.5
(5 Test	s			<u>P</u>	ROTEIN	(%)					*
Altona	42.4	42.2	,	44.8	43.1	41.8			40.8		41.7	40.9
Flambeau		42.6		45.1	43.3	41.8			42.4		43.2	42.3
Morsoy	39.7	38.9		41.4	38.6	40.0			39.1		40.2	39.3
Norman	41.8	40.7		44.9	42.6	40.5						
Portage	40.8	40.1		40.7	41.6	40.9			41.8		40.5	41.5
CM119	41.0	41.]		41.5	42.6	39.7			41,0		40.2	41.0
	41.0	41.0		41.6	42.8	39.6			41.0		40.2	42.0
CM121	40.0				40.2	38.3			41.0		39.9	42.2
CM127	42.2	39.6		42.9					39.4		39.8	41.0
Ada 	42.2	41.8		44.7	43.8	41,0			42.1		39.5	41.0
6	Test	s				OIL (%)					*
Altona	19.3	20.2	2	18.0	19.1	19.7			19.5		19.0	21.9
Flambeau	18.3	18.7	7	17.2	18.2	19.5			17.4		18.5	20.5
Morsoy	21.3	23.3	3	20.0	21.7	21.0			21.0		20.9	21.7
Norman	19.1	20.9		17.6	18.2	19.8			18.8		19.4	20.9
Portage	19.5	21.3		17.8	19.2	19.9			19.3		19.4	20.4
CM119	19.8	20.7		19.1	18.5	20,6			18.9			21.4
CM121	20.2	20.4		20.0	19.2	20.9					20.8	
CM127	20.7	21.9		19.1	19.8	22.1			19.5		20.9	21.2
Ada	18.9	20.0		17.3	18.3	19.4			20.4		21.1	21.2
	TO. A				10.3	13.4			18.9		19.7	20.8

^{*} Not included in the mean

Stra	in	Parentage	Generation Composited
1.	Morsoy		
2.	Norman		
3.	Portage		
4.	CM139	Acme x Blackhawk	F ₇
5.	CM145	II .	F7
6.	CM146	"	
7.	CM147	II .	F ₇
8.	CM148	n ?	F ₇ F ₇ F ₇
9.	CM149	u .	F ₇
10.	CM151	11	F ₇
11.	M63-133	M323(Hawkeye x Capital) x	,
		M406(Harosoy x Norchief)	F ₅

This test was grown at 8 locations in the U. S. and Canada. The 7 CM strains are all from Acme x Blackhawk. Perhaps the most notable one was CM145 which was the earliest one by several days, yielded well for its maturity, and was apparently the only one uniformly resistant to phytophthora rot. Among the remaining lines only CM147 and CM148 outperformed the appropriate check varieties. They were similar to Norman in time of maturity and had a better mean yield, yielding about as much as the later check, Morsoy. M63-133 had the highest mean yield in the test but appears to be too late for Group OO. Where data were available it appeared to ripen about the same time as Clay.

Regional Summary

Strain	Yield	Rank	Matu- rity	Lodg- ing	Height	Seed Quality	Seed Size	Seed Compo Protein	0i1
No. of Tests	8	8	6	8	88	8	6	5	5
Morsoy	32.4	2	+ 7.7	2.6	29	2.8	19.4	39.1	21.5
Norman	29.9	7	+ 2.8	1.9	27	2.0	17.7	41.1	19.8
Portage	27.9	10	9-12	1.0	25	2.9	17.7	40.6	19.7
CM139	30.4	6	+ 6.3	1.5	25	2.5	16.5	39.4	20.4
CM145	31.0	5	- 1.5	1.6	24	2.5	17.7	39.6	19.6
CM146	24.6	11	+ 3.7	1.6	25	2.9	17.7	41.4	19.6
CM147	32.4	2	+ 2.7	1.5	26	2.1	18.2	40.8	20.2
CM148	32.0	4	+ 3.3	1.5	26	2.7	18.9	41.2	20.3
CM149	29.1	9	+ 4.2	1.9	26	2.3	17.8	39.5	20.9
CM151	29.4	8	+ 5.2	2.5	27	3.2	15.8	39.3	20.9
M63-133	33.4	1	+14.0	1.9	32	3.0	21.9	41.4	19.9

Disease Data

	ВВ	BP	BS	R	FE ₂	PR
	Urbana Illinois	Urbana Illinois	Lafayette Indiana	Urbana Illinois	Lafayette Indiana	Lafayette Indiana
	nl	al	n %	n %	a	a
Morsoy	3	4	29	70	4	S
Norman	1	4	5	40	5	S
Portage	1	4	43	30	4	S
CM139	2	3	35	50	4	S
CM145	1	4	73	40	5	R
CM146	3	3	56	40	4	S
CM147	1	3	82	60	5	H
CM148	1	4	68	40	4	H
CM149	1	4	41	50	5	S
CM151	2	4	+4	30	5	H
M63-133	1	4	30	30	5	S

PRELIMINARY TEST 00, 1971

Descriptive and Shattering Data

Strain	Descr Code	iptive	Shatt Kansa <u>Manha</u> 2 wk.	ttan	<u>Chlorosis</u> Minnesota Crookston
Morsoy	PGNBr	DYLib	2	4	3.0
Norman	PGNBr	SYY	1	4	3.0
Portage	PGNBr	D+SYY	5	5	3.0
CM139	WGNBr	DYBf	3	5	1.5
CM145	PGNBr	DYY	4	5	3.0
CM146	PGNBr	IYIb	2	5	3.0
CM147	PGNBr	SYG	2	5	2.5
CM148	PGNBr	SYG	2	5	2.0
CM149	PGNBr	IYIb	3	5	3.0
CM151	P+WGNTn	SYBf*	2	5	2.5
M63-133	PGNBr	DYY	1	3	1.0

^{*} Normal and abnormal hilum

			Ontario		Wis.	Minnes	ota	Manitoba	North
Strain	Mean	Ot- tawa	<pre>Kempt- ville</pre>	Elora	Ash- land	Crook- ston	Rose- mount	Portage la Prairie	<u>Dak.</u> Fargo
	8 Test	s	1971	YIELD	(bu/a)				
Morsoy Norman Portage CM139	32.4 29.9 27.9 30.4	36.8 34.1 34.2 38.2	36.7 29.3 24.0 29.0	37.7 40.3 42.1 35.2	33.3 29.6 26.9 31.9	26.8 19.1 21.4 19.9	36.7 40.3 29.7 37.0	25.3 22.7 21.9 25.1	25.6 23.5 23.1 26.5
CM145 CM146 CM147 CM148	31.0 24.6 32.4 32.0	40.7 28.7 37.9 36.3	26.7 23.7 31.9 30.5	43.7 32.5 41.8 44.2	26.1 27.5 28.6 29.3	23.2 16.0 25.2 24.0	39.9 31.2 40.7 39.7	22.4 18.8 24.7 25.3	25.0 18.1 28.5 26.8
CM149 CM151 M63-133	29.1 29.4 33.4	32.2 37.0 41.4	30.9 28.2 32.9	33.9 38.5 34.7	29.7 26.5 32.4	23.4 20.6 19.8	33.4 36.3 47.8	20.9 22.5 28.4	28.2 25.4 29.8
Coef. of Var. (%) L.S.D. (5%) Row Spacing (in.) Rows/Plot Reps		6.9 5.5 34 3 2	14.7 n.s. 21 4 2	8.7 7.5 12 4 2	7.5 4.5 24 1 2	7.6 3.4 28 2	5.1 4.0 30 2 2	5.8 3.0 36 2 2	10.2 5.7 24 1 2

Strain	Mean	Ot- tawa	Ontario Kempt- ville	Elora	Wis. Ash- land	Minne Crook- ston	Rose- mount	Manitoba Portage la Prairie	North Dak. Fargo
	9 Tag		VIIIC						
	8 Test	LS		YIEL.	D RANK				
Morsoy	2	6	1	7	1	1	7	2	6
Norman	7	9	6	5	5	10	3	6	9
Portage	10	8	10	3	9	6	11	9	10
CM139	6	3	7	8	3	8	6	4	5
CM145	5	2	9	2	11	5	4	8	8
CM146	11	11	11	11	8	11	10	11	11
CM147	2	4	3	4	7	2	2	5	2
CM148	4	7	5	1	6	3	5	2	4
CM149	9	10	4	10	4	4	9	10	3
CM151	8	5	8	6	10	7	8	7	7
M63-133	1	1	2	9	2	9	1	1	1

	6 Test	s *	MA ⁷	TURITY (r	elative d	late) *			
Morsoy	+ 7.7	+10	+15	+14	+2		+ 7	+ 3	+ 5
Norman	+ 2.8	+ 7	+ 6	+ 6	0		+ 2	+ 1	+ 2
Portage	9-12	9-20	9-20	9-9	10-6		8-30	9-14	8-26
CM139	+ 6.3	+ 3	+11	+13	-1		+ 5	+ 1	+ 9
CM145	- 1.5	- 6	0	- 1	-8		0	0	0
CM146	+ 3.7	+ 6	+ 2	+ 4	-2		+ 5	+ 2	+11
CM147	+ 2.7	+ 4	+ 5	+ 7	- 4		+ 3	- 1	+ 6
CM148	+ 3.3	+10	+ 3	+ 4	+2		+ 3	0	+ 8
CM149	+ 4.2	+ 3	+ 7	+ 8	- 3		0	+ 2	+11
CM151	+ 5.2	-	+10	+ 9	- 3		+ 5	+ 2	+ 8
M63-133	+14.0	-	+20	+22	+1		+13	+13	+15
Clay (0)			+10	+30			+13		+16
Date Planted	5-20	5 - 20	5-21	5 - 19	6-4	5-21	5-22	5 - 14	5 - 7

^{*} Not included in the mean

Stra	in	Parentage	Generation Composited	Previous Testing
1.	Clay	Capital x Renville	F_	4
2.	Merit	Blackhawk x Capital	F.5	13
3.	Swift(M59-121)	<pre>II-54-240[(Lincoln² x Richland) x Korean] x II-54-139(Renville x Capital)</pre>	F ₅ F ₈ F ₅	3
4.	Wilkin(M61-52)	Merit x Harosoy	F ₅	1
5.	M61-96	II II		1
6.	M61-207	Merit x Norman	F ₂	P 0
7.	M61-216	Merit x Harosoy	F ₂	P O
8.	M62-173	M387(Renville x Capital) x M406(Harosoy x Norchief)	F ₅ F ₅ F ₅ F ₅	P 00
9.	M62-177	" "	F.	P 0
10.	M63-11	M402(Renville x Capital) x M406	F ₂	P O
11.	M63-38	11	F ₅	P O
12.	M63-87	Chippewa x PI 261.475(Shika No. 1)	F ₅ F ₅ F ₅ F ₆	P 0

^{*} Number of years in this test or name of last year's test.

Two new varieties are being released from this test, Swift and Wilkin. Swift has been in the test four years and shows an average advantage in yield over Clay and Merit and is only a day later than Merit. Wilkin is as early as Clay, slightly lower in mean yield, but is Phytophthora-resistant. M61-96 continues to have the top yield performance this year as it did in 1970 and is also Phytophthora-resistant and showed a tendency to superior seed quality in 1971 tests. The remaining seven strains are new entries this year. All are earlier than Swift and one is even earlier than Clay. None except possibly M61-207 showed evidence of a yield advantage over the check varieties.

Regional Summary

			Matu-	Lodg-		Seed	Seed	Seed Compo	osition
Strain	Yield	Rank	rity	ing	Height	Quality	Size	Protein	Oil
				19	71				
No. of Tests	8	8	7	8	8	7	8	6	6
Clay	35.6	7	-7.4	1.3	26	2.8	16.3	42.0	21.3
Merit	35.8	5	9-24+	1.7	32	2.1	14.7	40.8	21.4
Swift	37.1	2	-1.1	2.1	34	2.3	15.8	39.3	21.4
Wilkin	34.2	9	-7.9	1.2	26	2.0	14.9	41.3	20.5
M61-96	39.4	1	-1.4	1.7	31	1.5	15.8	40.5	21.5
M61-207	36.3	3	-3.6	1.7	29	2 . 0	15.3	41.1	20.3
M61-216	34.2	9	-6.1	1.6	30	1.9	15.1	41.2	20.8
M62-173	35.1	8	-9.1	1.4	26	2.3	14.2	40.2	22.1
M62-177	36.1	4	-5.6	1.6	29	2.3	17.6	41.7	20.5
M63-11	34.2	9	-3.4	1.8	32	2.2	16.7	41.6	21.2
M63-38	35.8	5	-2.4	1.6	29	2.2	19.6	41.3	21.3
M63-87	31.4	12	-5.9	1.7	26	2.3	16.5	43.5	19.3

^{† 129} days after planting

	1970-71, 2-year mean											
No. of Tests	16	16	14	15	T 6	14	14	11	11			
Clay	34.1	3	-6.7	1.4	27	2.4	16.7	41.4	21.8			
Merit	33.9	4	9-20+	1.8	34	1.9	14.9	40.9	21.4			
Swift	34.9	2	+0.4	2.3	35	2.1	15.8	39.3	21.5			
Wilkin	32.6	5	-6.4	1.2	27	2.0	17.5	40.9	20.9			
M61-96	36.6	1	-0.5	1.8	33	1.6	15.7	40.3	21.8			

^{† 122} days after planting

<u>1968-71</u> , 4-year mean											
No. of Tests	32	32	29	29	ა1	28	24	24	24		
Clay	34.0	3	-5.6	1.4	27	2.2	16.7	41.3	21.7		
Merit	34.2	2	9-20+	2.0	34	2.0	14.6	40.7	21.2		
Swift	35.6	1	+0.9	2.3	35	2.2	15.9	39.5	21.3		

^{† 124} days after planting

UNIFORM TEST 0, 1971

Disease Data

		BB		E	P	BS		BSF	2	FE ₂	PM		R
	Urb.	Α	mes	Urb.	Ames	Ames	Laf.	Urb.	St. Paul	Laf.	Har.	Laf.	Ames
Strain	Ill.	I	owa	Ill.	Iowa	Iowa	Ind.	Ill.	Minn.	Ind.	Ont.	Ind.	Iowa
	nl	n	a	al	n	n	n %	n %	n %	a	a	a	a
Clay	1	2	3	3	5	3	57	40	90	5	S	S	S
Merit	1	1	3.5	3	5	3	22	60	7 5	5	R	R	R
Swift	1	1	2.5	2	5	2.5	36	50	7 5	4	R	S	S
Wilkin	1	2	3.5	3	5	2.5	35	80	80	4	R	R	R
M61-96	1	2	3.5	2	5	2.5	18	40	60	5	R	R	R
M61-207	1	2	4	2	4.5	3	0	30	70	5	Н	R	R
M61-216	1	1	3.5	2	5	2	24	30	75	5	R	R	R
M62-173	1	2	2.5	3	5	2.5	31	50	35	5	Н	S	S
M62-177	1	1	3	2	5	2	20	60	85	4	Н	S	S
M63-11	1	1	3.5	3	5	2.5	25	40	80	5	R	S	S
M63-38	1	2	3.5	3 .	5	3	0	20	65	5	R	S	S
M63-87	1	2	2.5	3	5	4	30	50	65	3	R	S	S

Descriptive and Shattering Data

				Shatt	ering	Нуро-
Set - 2-1	2004	Per-	Fluor-	Kansa	cotyl	
Strain	Descriptiv		escent	Manha		Length
	Code	dase	Light	2 wk.	4 wk.	cm
Clay	PGNBr SYY	L+H	E	1	4	23
Merit	WGNBr DYB	f L	E	1	3	20
Swift	WTNBr DYB	1 H	E	1	3	17
Wilkin	WGNBr DYY	L	E	1	4	20
M61-96	WGNBr DYY	Н	E+L	1	4	20
M61-207	WGNBr DYY	L	E	1	2	22
M61-216	W+PGNBr DYG	+Y L	E	1	4	19
M62-173	PGNBr DYY	L	L	1	2	22
M62-177	PGNBr DYY	L	E	1	4	20
M63-11	PGNBr DYY	Н	E	1	5	19
M63-38	PTNBr DYT	n H	E	1	4	22
M63-87	PGNBr IYY	Н	Е	1	2	23

		N.Y.		Ontario		Ohio	Mich.
Strain	Mean	Aur-	Kempt-		Ridge-	Hoyt-	Sag-
		ora	ville	Elora	town	ville	inaw
	8 Tests	197	71 YIELD (bu/a)			
		*				*	
Clay	35.6	27.8	38.2	35.9	39.7	24.4	27.1
Merit	35.8	27.9	35.7	32.4	42.5	28.1	26.1
Swift	37.1	29.3	34.2	36.3	43.0	32.6	29.4
Wilkin	34.2	31.0	33.8	38.9	36.9	21.5	27.1
M61-96	39.4	33.0	37.5	45.7	42.4	30.4	29.6
M61-207	36.3	32.3	33.8	36.9	44.2	27.5	30.7
M61-216	34.2	32.0	36.6	37.2	39.7	23.9	26.3
M62-173	35.1	29.5	33.9	40.1	37.1	21.2	28.0
M62-177	36.1	31.8	37.0	39.4	40.8	18.1	25.5
M63-11	34.2	28.7	31.3	33.6	39.0	23.3	27.9
M63-38	35.8	28.1	30.3	37.3	43.3	23.2	27.8
M63-87	31.4	29.4	29.4	33.0	39.1	25.6	25.3
Coef. of V	ar. (%)	5.6	10.7	8.4	7.7		12.0
L.S.D. (5%		2.5	5.3	4.3	4.5		4.8
Row Spacin		2.5	21	12	24	32	28
Rows/Plot	g (±111.)		4	4	4	3	3
Reps			4	4	4	4	4
		*	YIELD RAN	K			
01	7		•	9	7	C	7
Clay Merit	7	12	1	12		6	10
	5	11	5		4	3	
Swift	2	8	6	8	3	1	3 7
Wilkin	9	5	8	4	12	10	
M61-96	1	1	2	1	5	2	2
M61-207	3	2	8	7	1	4	1
M61-216	9	3	4	6	7	7	9
M62-173	8	6	7	2	11	11	4
M62-177	4	4	3	3	6	12	11
M63-11	9	9	10	10	10	8	5
M63-38	5	10	11	5	2	9	6
M63-87	12	7	12	11	9	5	12
	32 Tests	1968-71	, 4-YEAR M	EAN YIEL	<u>D</u>		
						69-71	
C1 ner	211 0		20 F	27 1	1.5 1.		
Clay	34.0		38.5	37.1	45.4	23.3	
Merit	34.2		38.5	33.9	48.4	24.7	
Swift 	35.6		41.3	32.2	51.0	26.1	
			YIELD RAN	<u>K</u>			
Clay	3		2	1	3	3	
	2		2	2	2	2	
Merit							

^{*} Not included in the mean; a Milbank in 1968

Wisco			nesota	North I	Oakota Oakes	South Dakota	Oregon Ontario
Spooner	Durand	Morris	St. Paul	Fargo	I	Revillo	I
			1971	YIELD (bu/a))		
*	*			11222 (24,4)	<u>/</u>		*
17.3	14.1	40.8		26.3	38.8	38.1	51.1
19.9	12.5	38.6		25.7	43.6	41.6	61.9
16.2	11.7	40.6		25.3	46.5		
15.4	16.6	34.3		26.0	40.5	41.6 35.9	58.6 5 7. 5
21.3	14.4	42.1		27.5	48.2	42.3	70.3
16.7	12.6	39.2		24.7	40.9	40.2	60.4
19.0	13.8	35.0		25.2	40.6	32.9	60.0
16.3	12.9	37.1		29.9	39.9	34.6	60.5
11.4	16.9	36.7		25.1	40.9	43.5	55.0
16.5	13.2	35.2		25.9	43.3	37.1	62.5
13.4	13.5	47.4		25.0	41.9	33.5	55.6
9.3	13.7	32.7		23.3	36.5	31.6	52.7
		02.1		20.0		31.0	32.7
19.8	8.1	12.9		5.6	8.2	13.7	8.3
4.6	1.6	8.2		2.0	4.9		8.3
36	36	30		24	24	40	20
1	1	4		3	3	3	4
4	4	3		4	4	4	3
			Y	IELD RANK			
			_				*
4	4	3		3	11	6	12
2	11	6		6	3	3	3
8	12	4		7	2	3	7
					9		
9	2	11		4	9	8	8
1	3	2		2	1	2	1
5	10	5		11	6	5	5
5 3	5	10		8	8	11	6
7	9	7		1	10	9	4
						1	10
11	1	8		9	6	1	
6	8	9		5	4	7	2
10	7	1		10	5	10	9
12	6	12		12	12	12	11
			1968-71,	4-YEAR MEAN	YIELD		
	68, 70-71		68-70	69-71	70-71	a	
3.8	21.6	32.0	42.0	23.5	37.2	31.4	
		30.8	36.8	23.6	40.1	31.6	
6.7	21.3			24.4	42.5	32.6	
7.1	22.6	32.8	39.7		72.5	52.0	
			<u>Y</u>	IELD RANK	4.5		
3	2	2	1	3	3	3	
2	3	3	3	2	2	2	
Ī	ì	1	2	1	1	1	

		N.Y.		Ontario		Ohio	Mich
Strain	Mean	Aur-	Kempt-		Ridge-	Hoyt-	Sag-
		ora	ville	Elora	town	ville	inaw
	7 Tests	MATURI	Y (relati	ve date)		*	
Clay	-7.4		-11	-11	- 7	-16	-4
Merit†	9-24		10-10	10-11	9-8	9-9	9-14
Swift	-1.1		- 1	- 2	+ 1	0	0
Wilkin	-7.9		-10	- 9	- 8	- 7	-4
M61-96	-1.4		- 4	- 4	- 1	- 3	0
M61-207	-3.6		- 5	- 6	- 2	0	-2
M61-216	-6.1		- 9	-10	- 3	- 7	-3
M62-173	-9.1		-10	-11	-11	-15	-4
M62-177	-5.6		- 5	- 4	- 7	-12	-3
M63-11	-3.4		- 5	- 4	+ 4	- 6	-2
M63-38	-2.4		- 2	- 2	- 1	0	-1
M63-87	-5.9		- 5	- 5	- 6	- 5	-3
Morsoy (00)			-10	-18			
Chippewa 64 (I)					+ 2	+ 1	+4
Date planted	5-18	5-27	5-21	5-18	5-18	5-19	5-29
†Days to mat.	129		142	146	113	113	108
	8 Tests	LC	DGING (sc	ore)			
						*	
Clay	1.3		1	1.9	1.0	1.0	1
Merit	1.7		2	4.1	1.4	1.0	1
Swift	2.1		3	4.9	2.1	1.0	1
Wilkin	1.2		1	2.4	1.0	1.0	1
M61-96	1.7		2	3.8	1.5	1.0	1
M61-207	1.7		2	3.9	1.5	1.0	1
M61-216	1.6		2	3.4	1.5	1.0	1
M62-173	1.4		1	2.3	1.1	1.0	1
M62-177	1.6		1	2.6	1.5	1.0	1
M63-11	1.8		2	4.5	1.4	1.0	1
M63-38	1.6		1	4.1	1.0	1.0	1 1 1
M63-87	1.7		2	4.1	1.1	1.0	1

^{*} Not included in the mean

Wisco	ncin	w:	North I		South	Oregon
	Durand	Minnesota		Oakes	Dakota	Ontario
Spooner	Durand	Morris	Fargo	<u>I</u>	Revillo	I
		MATURI	TY (relativ	e date)		
*	*					*
	-2	-10	- 8		-1	- 7
	9-8	9-19	9-19		9-24	9-14
	+1	- 2	- 3		-1	- 1
	-3	-11	-11		-2	- 6
	+1	- 1	0		0	- 2
	0	- 5	- 3		-2	- 6
	0	- 9	- 7		-2	- 3
	-3	-15	-10		-3	-15
	-3	- 8	-12		0	- 6
	+2	-11	- 4		-2	- 3
	+3	- 5	- 5		-1	- 2
	+1	-10	-10		-2	- 2
		-17	-22			- 7
					+2	
5-28	5-28	5-12	5-7	5-26	5-21	5-1
	103	130	135		126	136
		I	ODGING (sco	ore)		
*	*	_				*
1.0	1.3	2.3	1	1	1	1.8
1.3	1.5	2.0	1	1	1	3.8
1.3	2.0	2.7	1	1	1	4.0
1.0	1.0	1.0	1	1	1	2.0
1.0	1.3	2.3	1	1	1	3.5
1.0	1.3	2.3	1	1	1	3.0
1.0	1.3	1.7	1	1	1	3.0
1.0	2.0	1.7	2	1	1	1.3
1.0	2.0	2.3	2	1	1	2.0
1.0	1.8	2.3	1	1	1	4.5
1.0	1.5	2.3	ī	1	1	3.2
1.0	1.3	2.0	ī	ī	ī	4.8

Ctrain	Mann	N.Y.	W	Ontario	Ridge-	Ohio Hoyt-	Mich. Sag-
Strain	Mean	Aur- ora	Kempt- ville	Elora	town	ville	inaw
		Ora					
	8 Tests		PLANT HEIG	HT (inche	es)	*	
Clay	26		29	33	21	23	23
Merit	32		38	42	24	26	28
Swift	34		39	44	28	32	33
Wilkin	26		29	34	21	25	21
M61-96	31		37	44	24	30	25
M61-207	29		35	36	23	26	25
M61-216	30		35	39	24	25	24
M62-173	26		28	35	21	24	23
M62-177	29		34	37	24	23	24
M63-11	32		36	42	25	26	30
M63-38	29		33	39	22	28	24
M63-87	26		31	33	20	24	24
	7 Tests		SEED QUALI	TY (score	e)	*	
				2	82		
Clay	2.8		3	5	2	1.0	
Merit	2.1		2	4	2	1.8	
Swift	2.3		3	2	3	1.8	
Wilkin	2.0		2	3	2	1.3	
M61-96	1.5		2	2	2	1.5	
M61-207	2.0		2	3	3	1.0	
M61-216	1.9		2	2	2	1.3	
M62-173	2.3		2	5	2	1.8	
M62-177	2.3		2	3	2	1.8	
M63-11	2.2		3	3	2	1.8	
M63-38	2.2		3	2	3	1.8	
M63-87	2.3		2	4	2	1.8	
	8 Tests		SEED SIZ	E (g/100)	*	
			-12.5.12.	221	1.2.2		1,12
Clay	16.3		14.7	17.0	16.3	15.7	17
Merit	14.7		15.2	14.9	15.4	13.6	15
Swift	15.8		16.0	17.1	17.1	17.7	17
Wilkin	14.9		14.3	15.6	15.3	15.4	15
M61-96	15.8		16.0	16.0	16.1	18.2	16
M61-207	15.3		15.6	14.8	16.8	15.1	16
M61-216	15.1		15.6	15.5	15.4	14.7	15
M62-173	14.2		13.3	14.9	13.6	15.5	15
M62-177	17.6		17.8	18.8	17.6	16.5	17
M63-11	16.7		16.8	17.2	18.4	17.6	17
M63-38	19.6		19.7	20.3	22.4	17.5	20
M63-87	16.5		16.7	17.1	17.6	18.0	17

^{*} Not included in the mean

Wisco	nein	Minnagata	North		South	Oregon
Spooner	Durand	Minnesota Morris	F	0akes	Dakota	Ontario
opooner	Durand		Fargo	I	Revillo	I
*	*	PLA	NT HEIGHT (inches)		
						*
30	24	26	24	28	24	32
35	28	34	30	34	28	49
36	31	33	32	33	26	50
30	25	25	25	28	24	35
35	31	34	30	29	27	42
32	28	31	29	31	25	33
34	26	31	29	30	26	39
31	23	25	25	25	24	28
33	27	28	28	30	26	33
34	29	32	32	32	28	50
32	30	32	26	31	25	43
28	24	23	22	28	23	34
		CEE	D OUAL TOY (
*		SEL	D QUALITY (score)		×
1.5		2.3	4	1	2.2	2.0
2.0		3.0	1	ī	1.7	1.5
2.3		3.7	2	ī	1.5	1.5
2.0		2.3	2	ī	1.5	2.0
1.9		1.3	1	1	1.5	2.0
2.3		2.0	2	1	1.2	2.0
1.7		3.0	2	1	1.5	3.0
2.5		2.7	2	1	1.2	2.5
2.9		3.7	3	1	1.2	2.5
1.9		2.7	2	1	1.5	1.5
1.6		3.3	2	1	1.2	2.0
1.7		2.3	3	1	2.0	2.0
		SI	EED SIZE (g	/100)		
						*
		15.6	13.0	18.2	18.3	20.0
		14.8	12.1	14.2	15.6	18.5
		13.9	13.3	15.8	15.8	21.0
		14.4	12,2	17.0	15.3	20.0
		15.3	13.3	17.7	16.3	19.0
		14.2	14.1	15.6	15.2	19.5
		14.1	13.2	15.7	16.2	19.5
		13.8	12.0	15.8	15.3	18.5
		16.6	13.8	19.2	19.9	23.5
		16.1	14.1	16.7	17.6	21.5
		18.9	14.8	19.8	20.9	21.5
		15.5	14,0	16.9	17.0	20.0

Strain	Mean	Ontario Elora	Michigan Saginaw	Wisconsin Spooner	Minnesota Morris	North Dakota Fargo	South Dakota Revillo	Oregon Ontario
	6 Tests			PROTEIN	(%)			*
Clay	42.0	46.3	39.0	43.0	40.5	42.2	40.7	41.2
Merit	40.8	44.4	39.1	43.3	38.8	40.4	38.8	39.2
Swift	39.3	43.4	37.2	42.4	36.1	40.0	36.9	37.9
Wilkin	41.3	45.0	39.8	44.3	38.2	41.4	39.0	41.0
M61-96 M61-207 M61-216 M62-173	40.5 41.1 41.2 40.2	43.4 44.0 44.5 43.7	38.0 39.9 40.1 38.8	44.2 44.4 44.1 42.6	37.8 39.5 38.6 36.5	41.3 41.3 41.1	38.5 37.7 38.6 38.3	40.0 41.1 40.1 38.8
M62-177	41.7	44.2	40.1	44.6	39.2	41.3	40.9	40.7
M63-11	41.6	43.0	39.4	44.3	39.2	42.8	40.6	40.7
M63-38	41.3	43.5	40.5	42.4	39.8	40.0	41.3	38.8
M63-87	43.5	47.9	42.5	46.4	39.6	42.7	42.0	42.2
	6 Tests			OIL (%)			*
Clay	21.4	18.8	23.2	19.7	22.5	20.6	22.8	23.0
Merit	21.4	18.8	23.1	19.2	22.6	21.6	23.2	22.3
Swift	21.4	18.9	23.0	18.9	22.9	21.4	23.0	23.3
Wilkin	20.5	18.1	22.0	18.7	21.9	20.0	22.1	21.0
M61-96	21.5	18.8	23.7	18.7	23.4	21.0	23.5	22.8
M61-207	20.3	18.3	21.5	18.0	21.8	20.0	21.9	21.7
M61-216	20.8	18.1	22.4	19.0	22.1	20.3	22.9	21.7
M62-173	22.1	24.7	22.6	19.2	22.4	20.5	23.3	23.3
M62-177	20.5	18.1	21.9	18.0	22.0	21.0	21.7	21.4
M63-11	21.2	18.2	22.4	19.4	23.0	20.8	23.4	23.0
M63-38	21.3	19.8	22.3	19.6	22.8	21.1	22.3	23.0
M63-87	19.3	16.6	20.8	16.9	21.6	19.3	20.7	19.9

^{*} Not included in the mean

Strain		Parentage	Generation Composited
1.	Clay Merit		
3.	M63-172	M402(Renville x Capital) x M406(Harosoy x Norchief)	Fs
4.	M64-64	0-57-2921(Blackhawk x Capital) x Traverse	F ₅

This small test was grown at 8 locations in 1971. The 2 experimental lines were similar to Merit in maturity. M64-64 was similar to Merit in mean performance but M63-172 showed a striking yield advantage.

Regional Summary

			Matu-	Lodg-		Seed	Seed	Seed Compo	sition
	Yield	Rank	rity	ing	Height	Quality	Size	Protein	0i1
No. of Tests	7	7	6	6	7	6	7	3	3
Clay	35.2	2	-6.8	1.3	26	2.7	15.6	43.4	20.3
Merit	33.2	3	9-25	1.9	31	2.4	15.1	43.0	19.7
M63-172	39.5	1	+0.2	2.3	35	2.8	17.5	43.3	19.7
M64-64	33.1	4	-1.0	2.1	33	2.6	14.7	43.4	19.2

Disease Data

	BB		BP	BSR		FE ₂	PR		
•	Urbana Illinois		Urbana Illinois	Lafayette Indiana	Urbana Illinois	Lafayette Indiana	Lafayette Indiana	Ames	
	n1	n	al	n %	n %	a	а	a	
Clay	1	2	3	57	50	5	s	S	
Merit	1	2	3	22	40	5	R	R	
M63-172	1	2	2	16	30	5	S	S	
M64-64	1	2	2	21	50	4	R .	S	

Descriptive and Shattering Data

		Shattering
Strain	Descriptive Code	Kansas <u>Manhattan</u> 2 wk. 4 wk
Clay	PGNBr SYY	1 4
Merit	WGNBr DYBf	1 2
M63-172	P+WGNBr DYY	1 5
M64-64	WGNBr DYY	1 2

		01	Ontario		Mich.	Wis.		North	South
Strain	Mean	Kempt- ville	Elora	Ridge= town	Sagi- naw	Spoon- er	Minn. Morris	<u>Dak.</u> Fargo	Dak. Revillo
						*			441
Clay	35.2	29.8	38.3	39.2	31.0	14.6	40.8	33.2	34.4
Merit	33.2	30.4	31.2	48.3	25.1	14.9	38.6	24.5	34.6
M63-172	39.5	30.8	36.5	47.7	33.0	11.9	53.1	30.5	44.6
M64-64	33.1	25.7	37.2	37.2	25.3	13.6	36.5	30.0	40.1
Coef. of Var. (%	.)	12.3	7.8	5.6	13.0	21.8	16.8	12.4	
L.S.D. (5%)	,	n.s.	n.s.	4.0	10.9	n.s.	12.6	10.1	
Row Spacing (in.)	21	12	24	28	36	30	24	40
Rows/Plot		4	4	4	3	1	4	1	3
Reps		2	2	2	2	2	3	2	2
	7 Test	9		YIELD RA	NK				
	, 1000			TIDED IG	III.	*			
Clay	2	3	1	3	2	2	2	1	4
Merit	3	2	4	1	4	1	3	4	3
M63-172	1	1	3	2	1	4	1	2	1
M64-64	4	4	2	4	3	3	4	3	2
	6 Test		MATURIT	V (relat	ive dat	e)			
	0 1000		THIT OILL I	1 120100	IVC dat	*		*	
Clay	-6.8	-11	- 5	- 8	- 4		-10	- 6	- 3
Merit	9-25	10-10	10-14	9-10	9-14		9-19	9-19	9-24
M63-172	+0.2	0	0	+ 3	- 2		+ 2		- 2
M64-64	-1.0	+1	+ 1	- 3	- 3		- 2		0
Morsoy (00)		- 5	-21				- 17	-21	
Chippewa 64 (I)		.		+ 5	+ 4		+ 6		+ 2
Date Planted	5 - 20	5-21	5-17	5 - 18	5-29	5-28	5-12	5 - 7	5-21

Stra	in	Parentage	Generation Composited	Previous Testing*
1.	Chippewa 64	Chippewa ⁸ x Blackhawk	29 F ₂ lines	9
2.	SL8	Chippewa-Ir Rps rxp(Ll6) x Kanrich	$3 F_3^3 lines$	1
3.	Hark	Hawkeye x Harosoy	$\mathbf{F}_{\mathbf{a}}^{3}$	7
4.	A66-1240-2	Provar x F ₁ (Harosoy 63 x PI 84.666-1)	F_5^9	ΡI
5.	L68-4241	Chippewa-Rps rxp(L10) ⁵ x S62X30:1	F.	ΡI
6.	Steele(M59-213)	Blackhawk x Harosoy	F ₂	3
7.	M61-224	Merit x Harosoy	F ₋ ⁵	ΡI
8.	M62-93	Merit x M406(Harosoy x Norchief)	F ₅	1
9.	M62-263	Grant x M319W(Lincoln x Hawkeye)	F_	ΡI
10.	M62-275	Norchief x Harosoy	F ₋ ⁵	ΡI
11.	M62-345	M319W x Harosoy	F ⁵	ΡI
12.	M63-17	M402(Renville x Capital) x M406	F ₅	PI

^{*} Number of years in this test or name of last year's test.

The new release, Steele, has been in the test four years and the four-year means show it to be almost as early as Chippewa 64 and superior in yield at almost every location. It is also Phytophthora-resistant and equal in other respects to Chippewa 64. M62-93 has been in the test two years, averaged two days earlier than Steele but somewhat lower in yield. It is outstanding in its high oil content. SL8 has also been in the test two years. It is the result of adding downy mildew resistance (Rpm from Kanrich) to a backcross line of Chippewa which already has phytophthora (Rps) and pustule resistance (rxp) and yellow hilum (I r). Yield performance averaged slightly better than Chippewa 64 but it also averaged a day later. The poorer seed quality rating may be related to the change in seed pigment.

The remaining seven strains were new entries this year. L68-4241 is another Chippewa backcross line, but it is less advanced and apparently carrying modifying genes for maturity at least. The major genes transferred to it are Phytophthora resistance ($\underline{\text{Rps}}$), pustule resistance ($\underline{\text{rxp}}$), and downy mildew resistance ($\underline{\text{Rpm}}$), white flower color ($\underline{\text{wl}}$), gray pubescence ($\underline{\text{t}}$), and yellow hilum ($\underline{\text{I}}$). It generally outyielded Chippewa but was considerably later and similar to Hark in mean performance.

A66-1240-2 was higher than the other entries in protein content but was the lowest in mean yield, slightly below Chippewa 64. Of the new M strains M62-263 was the outstanding one in performance, averaged highest in yield in the test, slightly above Hark, and was almost two days earlier.

Regional Summary

			Matu-	Lodg-		Seed	Seed	Seed Compo	ositio
Strain	Yield	Rank	rity	ing	Height	Quality	Size	Protein	Oil
					71				
No. of Tests	18	18	16	18	18	15	14	12	12
Chippewa 64	37.9	10	9-9 †	1.6	34	1.7	15.6	41.2	21.2
SL8	38.3	9	+0.9	2.1	34	2.2	15.4	41.8	21.2
Hark	40.5	2	+6.9	1.6	35	1.6	16.6	42.8	20.9
A66-1240-2	37.0	12	-0.1	1.9	31	2.0	19.7	44.5	20.1
L68-4241	40.0	3	+6.3	1.8	33	1.6	15.1	40.4	21.7
Steele	39.1	7	+1.1	1.7	33	1.6	17.3	40.2	21.5
M61-224	38.4	8	-1.2	1.2	30	1.8	16.4	39.6	22.3
M62-93	37.6	11	-1.9	1.6	29	1.7	16.4	39.7	22.8
M62-263	40.9	1	+5.4	1.8	31	2.1	20.4	40.0	22.0
M62-275	39.7	5	+2.4	2.0	34	1.8	18.4	39.4	22.1
M62-345	40.0	3	+6.1	2.0	33	1.8	18.2	41.0	21.9
M63-17	39.5	5	+2.7	1.5	34	2.0	16.1	40.5	22.2

	<u>1970-71</u> , 2-year mean													
No. of Tests	38	38	33	36	38	30	28	23	23					
Chippewa 64	34.8	5	9-11+	1.7	34	1.9	14.9	41.0	21.1					
SL8	- 36.0	3	+1.2	2.0	34	2.2	15.1	41.6	21.1					
Hark	- 38.4	1	+6.8	1.6	36	1.8	16.3	42.0	21.0					
Steele	- 36.9	2	+1.5	1.7	34	1.8	16.8	40.3	21.4					
M62-93	35.3	4	-0.8	1.7	30	2.2	16.4	39.7	23.0					

† 110 days after planting

<u>1968-71</u> , 4-year mean													
No. of Tests	78	78	70	69	76	61	58	45	45_				
Chippewa 64	35.6	3	9-15+	1.7	34	1.9	15.2	41.1	21.3				
Hark	39.6	1	+5.5	1.8	36	1.8	16.2	41.8	21.1				
Steele	38.5	2	+1.3	1.8	35	1.8	16.6	40.4	21.4				

^{† 113} days after planting

Disease Data

		B	В			B	P	E	S		BSR		FE ₂	PM	Pl	R
	Uı	rb.	Ar	nes	U:	rb.	Ames	Laf.	Ames	Laf.	Urb.	St. P.	Laf.	Har.	Laf.	Ames
Strain	I.	11.	Id	owa	I	11.	Iowa	Ind.	Iowa	Ind.	I11.	Minn.	Ind.	Ont.	Ind.	Iowa
	nl	n2	n	а	a2	al	n	n	n	n	n	n	a	a	a	а
										8	%	%				
Chippewa 64	1	2	2	4	S	2	5	4	3.5	47	40	90	4	R	R	R
SL8	1	2	2	3.5	R	1	2	5	4.5	21	30	65	4	R	R	R
Hark	1	5	2	3	S	1	4	4	3	41	60	55	5	S	S	S
A66-1240-2	1	5	2	3	S	1	4.5	5	2	12	80	100	5	R	S	S
L68-4241	1	3	1	4	R	1	2	3	3	33	100	45	4	R	R	R
Steele	3	5	2	3	S	1	4.5	5	2	64	80	85	5	S	R	R
M61-224	3	3	2	4	S	1	5	5	2.5	11	50	100	4	S	H	R
M62-93	3	1	2	2.5	S	2	5	5	4.5	31	40	80	5	R	R	R
M62-263	1	3	2	3	S	2	5	3	3.5	16	50	80	5	R	S	S
M62-275	3	2	1	2	S	1	4.5	3	4	21	30	65	5	R	S	S
M62-345	1	5	1	3.5	S	3	5	4	2.5	10	50	45	5	R	S	S
M63-17	1	3	2	4	S	3	5	5	3.5	35	40	70	4	R	S	S

Descriptive and Shattering Data

Strain	Descriptive Code	Per- oxi- dase	Fluor- escent Light	Shatt Kansa Manha 2 wk.		Hypo- cotyl Length cm
Chippewa 64	PTNBr SYB1	L	E	1	1	20
SL8	PTNBr SYY	L	E	1	1	20
Hark	PGNBr DYY	Н	L	4	5	21
A66-1240-2	PTNBr DYTn	Н	L	1	3	19
L68-4241	WGNBr SYY	L	E	1	2	19
Steele	PGNBr DYY	L	E	2	5	22
M61-224	WGNBr DYY	L	L	5	5	20
M62-93	WGNBr DYY	Н	E	2	4	22
M62-263	WGNBr SYB1	L	L	3	5	22
M62-275	PGNBr IYY	Н	E	3	5	22
M62-345	WGNBr SYY	L	L	2	2	19
M63-17	WGNBr DYY	Н	E	3	4	20

		N.Y.	Onta			Ohio			chigan	Inc	liana	Wisco	
Strain	Mean				Hoyt-		Col- umbus		Peters-	Knov	Lafay- ette	Dur- and	Mad- ison
		ora	town	row	ville				Durg	NIOX	ette	and	15011
	8 Tes					YIELD	(bu/a		*			*	*
Chippewa 64	37.9	3Î.5	46.9	30.3	32.4	15.8		30.8	17.1	32.1	42.3		24.6
SL8	38.3	29.5	51.1	29.2	30.4	18.1		30.1	18.7	30.8	43.9	10.2	
Hark		31.6		26.5	32.8	15.8		32.6	16.8	35.0	52.1	15.5	
A66-1240-2	37.0	29.3	46.8	29.4	26.9	16.7	20.1	27.8	18.1	32.3	42.0	13.8	
L68-4241		35.6		30,6	35.5	17.2		33.9	16.8	36.1	45.1	11.6	
Steele		39.9		34.6	31.5	12.4		32.4	17.8	32.2	45.3	13.9	
M61-224		33.4		28.4	29.4	11.3		30.7	15.3	32.8	47.0	15.7	
M62-93	37.6	35.3	55.9	30.2	23.2	10.5	16.6	28.7	15.5	36.7	41.0	11.6	
M62-263	40.9	36.2	58.7	29.9	33.8	15.4	22.8	32.0	19.2	33.9	46.4	15.2	
M62-275		36.1		29.8	31.4	15.3		31.6	19.2	40.9	47.7	14.3	
M62-345		31.2		32.0	25.1	12.3		30.8	17.7	36.8	45.0	13.2	
M63-17	39.5	33.4	56.4	28.8	33.1	13.5	24.4	29.7	21.0	35.1	47.0	13.1	24.8
C.V. (%)		5.6	7.2	15.3				11.0	18.0	14.7	5.5	9.0	14.9
L.S.D. (5%)		2.5	5.6	n.s.				7.2	4.7	n.s.	3.6	1.7	6.1
Row Sp. (in	.)		24	24	32	32	28	28	38	38	38	36	36
Rows/Plot			4	4	3	3	3	3	3	3	3	1	1
Reps			4	3	4	4	4	4	4	4	4	4	4
					Y	IELD RA	ANK						
Chinacus Ell	10	* 9	11	4	* — 5	*4	*	6	*8	11	10	:	11
Chippewa 64 SL8	9	11	9	9	8	1	9	9	4	12	9	11	5
Hark	2	8	4	12	4	4	2	2	9	6	ĺ	2	7
A66-1240-2	12	12	12	8	10	3	10	12	5	9	11	6	12
L68-4241	3	4	2	3	1	2	7	1	9	4	7	9	2
Steele	7	1	7	1	6	9	5	3	6	10	6	5	6
M61-224	8	6	9	11	9	11	11	8	12	8	3	1	8
M62-93	11	5	6	5	12	12	12	11	11	3	12	9	9
M62-263	1	2	3	6	2	6	6	4	2	7	5	3	3
M62-275	5	3	7	7	7	7	1	5	2	1	2	4	4
M62-345	3	10	1	2	11	10	3	6	7	2	8	7	1
M63-17	5	6	5	10	3	8	4	10	1	5	3	8	10
78	3 Test	ts		196	8-71,	+-YEAR	MEAN '	YIELD					
												68, 70-71	
Chippewa 64	35.6		46.2	30.8	27.3	24.4	33.4			35.1	43.1	15.4	34.4
Hark	39.6		52.5	34.9	28.9	25.9	35.3			40.0	49.9		36.0
Steele	38.5		54.8	34.8	27.6	24.5	30.8			36.8	46.5		36.9
					<u>Y</u> :	IELD R							
Chippewa 64	3		3	3	3	3	<u>*</u> 2			3	3	3	3
Hark	1		2	1	1	1	1			ì	1	2	2
Steele	2		1	2	2	2	3			2	2	1	1

^{*} Not included in the mean

I.	llino	is	Minne	sota	Iowa	a	Misso	ouri	N.Dak.	S. I	akota	Nebra	aska
De-	Pon-		Lamb-	Wa-	Suth-	Kan-	Spick-		Oakes		Brook-		
kalb	tiac	bana	erton	seca	erland		ard	umbia	I	illo		cord	I
					:	1971 Y	IELD (b	<u>u/a)</u>					
	34.0		33.4	37.3	43.5	39.3	38,1	38.2	43.4	44.9	29.1	31.1	43.6
	33.1		41.4	35.1	43.3	39.5	41.3	40.4	42.1	43.0	31.3	29.3	41.0
	34.5		32.7	36.7	49.2	41.8	34.7	42.8	41.7	51.3	34.0	36.4	47.3
33.7	33.7	42.6	35.1	35.4	43.8	40.9	40.6	33.7	39.2	43.9	31.0	32.6	40.9
39.6	33.0	49.7	35.6	37.0	46.5	39.4	36.6	41.0	36.2	48.0	30.9	22 2	45.3
	36.2		32.7	36.3	44.4	39.4	38.5	38.4	40.9	44.9	30.8		46.1
36.8	36.2	44.2	38.4	36.8	45.6	40.9	36.9	26.9	44.2	41.0	34,3		48.1
32.8	34.0	41.2	39.1	39.3	48.6	38.7	37.4	22.2	51.5	43.0	29.2		44.6
20.2	33.8												
	32.3		35.8	38.2	48.4	42.5	41.5	41.2	43.0	51.2	32.5		43.8
	33.4		33.5 34.1	36.3	49.3	40.1	34.6	37.4	44.5	43.8	31.0		47.1
	32.1		37.2	32.4 38.1	46.9	41.4	37.0	38.5	43.7	49.8	32.9		45.5
57.5	32.1	31.7	37.2	30.1	47.0	40.7	35.3	37.4	45.6	43.3	34.6	32.0	47.5
5.7	8.9	3.7	9.3	10.1	5.2	6.2	4.9	9.1	9.9	9.5	9.0	6.7	6.7
3.6	5.1	4.3	5.5	6.1	3.5	3.6	2.6	4.8	6.1	n.s.	n.s.	3.8	5.0
30	38	30	30	30	27	27	15	15	24	40	30	30	30
4	4	4	4	4	4	4	4	4	2	3	3	4	4
3	3	3	3	3	4	4	4	4	4	4	4	3	3
						YIE	LD RANK						
2	4	7	10	4	11	11	5	7	* 6	5	12	11	10
5	9	6	1	11	12	8	2	4	8	10	6	12	11
9	3	9	11	7	2	2	11	1	9	1	3	2	3
11	7	11	7	10	10	4	3	10	11	7	7	8	12
						•					•	•	
1	10	4	6	5	7	9	9	3	12	4	9	9	7
10	1	8	11	8	9	9	4	5	10	5	10	7	5
8	1	10	3	6	8	4	8	11	4	12	2	4	1
12	4	12	2	1	3	12	6	12	1	10	11	3	8
2	6	1	5	2	4	1	1	2	7	2	5	5	9
7	11	5	9	8	1	7	12	8	3	8	7	1	4
4	8	3	8	12	6	3	7	5	5	3	4	6	6
5	12	2	4	3	5	6	10	8	2	9	1	10	2
					1968-	71 4-	YEAR MEA	N YIEI.	D				
					1300	_,	68-69,		_				68,
						69-71	71					7	70-71
42.3	32.4	43.7	35.9	37.9	33.5	37.6	39.7	32.0		30.6	30.3	33.5	40.0
	35.6		38.8	41.0	39.2	42.1	42.2	37.4		33.6	32.6	39.0	
	36.2		38.6	38.9	35.6	38.0	43.1	33.5		32.3	32.5	38.0	
						YIE	LD RANK						
3	3	3	3	3	3	3	3	3		3	3	3	3
1	2	1	1	1	1	1	2	1		1	1	1	1
2	1	2	2	2	2	2	1	2		2	2	2	2

		N.Y.	Onta	rio		Ohio			nigan		iana		is.
Strain	Mean	Aur-	Ridge	-Har-	Hoyt-	Woos	-Col-	Sag-	Peters		Lafay		
		ora	town	row	ville	ter	umbus	inaw	burg	Knox	ette	and	ison
1	6 Test	ts		MATU			ive da	te)					
Chippewa 64†	9-9	*	9-13	9-10	9-8	9-2	9-1	9-18	9 * 11	9-12	8-30	9-13	9-19
SL8	+0.9		+ 4	0	+ 1	+ 1	- 2	0	0	+ 2	0	-1	- 1
Hark	+6.9		+15	+ 3	+ 7	+ 5	+10	+5	+3	+ 4	+7	+6	+ 3
A66-1240-2	-0.1		- 3	+ 3	+ 2	+ 1	+ 3	+1	+1	+ 1	0	+2	+ 3
L68-4241	+6.3		+13	+ 2	+ 3	+ 7	+ 8	+6	+3	+10	+5	+4	+ 5
Steele	+1.1		+ 7	+ 7	- 3	+ 3	+ 1	-2	0	+ 1	-1	-1	+ 2
M61-224	-1.2		- 4	- 2	0	+ 2	+ 1	-1	-2	0	-1	0	0
M62-93	-1.9		- 4	- 2	0	- 1	- 2	-1	0	0	-3	-2	- 2
M62-263	+5.4		+12	+ 5	+ 2	+ 7	+ 8	+6	+1	+ 7	+6	+4	+ 4
M62-275	+2.4		+10	+ 3	+ 2	+ 8	+ 4	+1	+1	+ 5	+2	+3	+ 3
M62-345	+6.1		+14	+ 8	+ 4	+10	+ 8	+6	+2	+ 8	+6	+5	+ 5
M63-17	+2.7		+10	+ 7	+ 2	+ 7	+ 6	+4	+1	+ 1	+1	+5	+ 4
Merit (0)			- 5	-12	+ 1			-4				-5	-13
Corsoy (II)			+17	+ 5	+10	+11	+24	+3	+9	+11	+9	+8	+ 5
Date Planted	5-20	5-27	5-18	5-19	5-19	5-14	5-18	5-29	5-21	5-26	5-18	5-28	5-19
†Days to mat.	112		118	114	112	111	106	112	113	109	104	108	123
1.	8 Test	s			LODGII	NG (s	core)						
Chippewa 64	1.6		2.5	1	i i	å	*1	1	*1	2.1	2.4	2.0	1.1
SL8	2.1		3.6	ì	1	ı	ī	i	1	2.3	3.0	2.0	1.0
Hark	1.6		2.6	ī	ī	ī	ī	ī	ī	2.3	1.8	1.0	1.0
A66-1240-2	1.9		3.8	ī	ī	ī	ī	ī	1	2.1	2.3	2.0	1.4
L68-4241	1.8		1.8	1	1	1	1	1	2	2.4	2.3	1.3	1.3
Steele	1.7		3.6	ī	ī	ī	ī	ī	ī	2.5	2.1	1.3	1.3
M61-224	1.2		1.8	ī	ī	ī	ī	ī	ī	1.4	1.1	1.0	1.0
M62-93	1.6		2.6	1	1	ī	1	ī	ī	2.3	2.0	3.0	1.1
M62-263	1.8		2.9	1	1	1	1	1	1	2.1	2.9	2.5	1.5
M62-275	2.0		3.8	1	1	1	1	1	1	3.6	3.1	2.0	1.0
M62-345	2.0		3.6	1	1	1	1	1	1	3.3	3.4	1.5	1.8
M63-17	1.5		1.8	1	1	1	1	1	1	2.6	2.0	1.5	1.4

De- Pon- Ur- Lamb Wa- erton Seca Suth Kan erton Spick Col Oakes Rev Brook Con Mead Cord I		llino		Minne	sota	Iow	a	Miss	ouri	N.Dak.	S.	Dakota	Nebr	aska
Realb tiac bana erton seca erland awha ard umbia I illo ings cord I						Suth-	Kan-							
8-30 8-26 8-29 9-9 9-11	kalb	tiac	bana	erton	seca	erland	awha							
8-30 8-26 8-29 9-9 9-11 9-9 8-28 9-26 9-25 9-9 9-8 1 9-9 1 9-11 9-9 8-28 9-26 9-25 9-9 9-8 1 9-9 1 9-11 1 9-9 8-28 9-26 9-25 9-9 9-8 1 9-9 1 9-8 1 9-11 1 9-9 8-28 1 9-26 9-25 9-9 9-8 1 9-9 1 9-8 1 9-11 1 9-9 8-28 1 9-26 9-25 9-9 9-8 1 9-8 1 9-26 9-25 9-9 9-8 1 9-8 1 9-26 9-25 9-9 9-8 1 9-8 1 9-26 9-25 9-9 9-8 1 9-8 1 9-26 9-25 9-9 9-8 1 9-8 1 9-26 9-25 9-9 9-8 1 9-8 1 9-26 9-25 9-9 9-8 1 9-8 1 9-26 9-25 9-9 9-8 1 9-8 1 9-26 9-25 9-9 9-8 1 9-8 1 9-26 9-25 9-9 9-8 1 9-8 1 9-26 9-25 9-9 9-8 1 9-8 1 9-26 9-25 9-9 9-8 1 9-8 1 9-26 9-25 9-9 9-8 1 9-8 1 9-26 9-25 9-9 9-8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1						MATU	RITY (relativ	e date)				
. 0 0 0 0 + 4 0 0 +2 +3 0 +1 -2 0 +9 +8 +8 +8 +10 +6 +8 +7 +4 +4 +6 +5 +6 +5 +6 +7 +6 +7 +6 +7 +6 +5 +5 +4 +7 +1 +1 +6 +5 +6 +7 0 +3 -3 +4 0 +2 -1 +1 0 0 0 0 0 -1 +4 -4 0 -3 -2 -3 0 0 -2 -1 +1 -3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	8-30	8-26	8-29	9-9	9-11	*	9-9	*	8-28	*	9-26	9-25	9-9	9-8
+ 9 +8 +8 +10 +6 +8 +7 +4 +6 +5 +6 - 3 +5 -3 +1 0 -1 -2 +1 -1 -3 0 + 6 +5 +6 +7 +6 +5 +5 +4 +7 +7 +6 +5 +5 +4 +7 +7 +6 +5 +5 +4 +7 +7 +6 +5 +5 +4 +7 +7 +6 +5 +5 +4 +7 +6 +5 +5 +6 +3 +1 +3 -2 +2 +2 +2 +2 +2 +3 +1 +1 -3 -2 +2 +2 +2 +3 +1 +3 +1 +3 +5 +5 +6 +3 +1 +1 +1 +2 +3 +1 +1 +1 +4 +4 +4 +4 +4 +4 +4 +4 +4 +4 +4 +4 +4 +4 +4 +4 +4				+ 4	0		+2							
- 3			+8	+10	+6									
0 +3 -3 +4 0 +2 -1 +1 0 0 0 0 0 -1 +1 +1 0 0 0 0 0 -1 +4 -4 0 -3 -2 -3 0 -2 -1 +1 -5 +3 -5 0 -3 -3 -3 -5 +1 -3 -2 +2 +2 +6 +6 +6 +4 +6 +5 +5 +5 +5 +6 +3 +1 +1 -1 +2 +7 +7 +6 +5 +3 +5 +7 +4 +4 +4 +4 +4 +4 +4 +4 +4 +4 +4 +4 +4	- 3	+5	-3	+ 1	0		-1				+1			
- 1	+ 6				+6		+7		+6		+5	+5	+4	+7
- 5	-			+ 4	0		+2		-1		+1	0	0	0
+ 6 + 6 + 4 + 6 + 5 + 3 + 5 + 6 + 3 + 1 + 1 -1 + 2 + 7 + 7 + 6 + 5 + 3 + 5 + 5 + 7 + 4 + 4 + 4 + 4 + 4 + 4 + 4 + 4 + 4				0	-3		-2		-3		0	-2	-1	+1
0 +6 +2 +2 0 +2 0 +2 +3 +1 +1 -1 +2 +4 +4 +4 +4 +4 +4 +4 +4 +4 +4 +4 +4 +4	- 5	+3	- 5	0	-3		-3		-5		+1	-3	-2	+2
+ 7 +7 +6 +5 +3 +5 +3 +5 +7 +44 +4 +4 +4 +4 +4 +4 +4 +4 +4 +4 +4 +4	+ 6	+6	+4	+ 6	+5		+5		+6		+3	+1	+3	+5
+ 4 + 4 + 4 0 + 1 + 1 + 4 + 4 + 1 + 2 + 3 -2 + 2 - 6 -2 -7 - 6 -4 + 11 + 5 + 8 + 11 + 5 - 6 -2 -7 - 6 -6 -4 + 11 + 5 - 7 - 8 + 8 + 11 + 5 - 8 -2 + 18 + 11 + 5 - 18 5-18 5-15 5-13 5-14 5-13 5-21 5-13 5-19 5-26 5-21 5-26 5-21 5-26 - 108 100 106 119 120 111 101 128 122 111 105	-		+2	+ 2	0		+2		+3		+1	+1	-1	+2
- 6 -2 -7		+7	+6	+ 5	+3		+5		+7		+4	+4	+4	+4
+13 +7 +8 +11 +5	+ 4	+4	0	+ 1	+1		+4		+1		+2	+3	-2	+2
+13 +7 +8 +11 +5	- 6	-2	-7	- 6	_u						-2			
108 100 106 119 120 111 101 128 122 111 105 LODGING (score)									+8			+7		+9
108 100 106 119 120 111 101 128 122 111 105 LODGING (score) LODGING (score) 1.2 1.3 1.4 2.3 2.0 2.0 2.0 1.5 1.7 2.0 2 1 1 1 1.1 1.2 1.3 2.5 4.0 2.3 2.3 2.0 2.7 2.4 2 1 1 1 2.7 1.2 1.3 1.6 2.0 1.3 1.9 1.5 1.2 1.6 2 1 1 1 2.8 1.7 2.7 1.5 3.2 2.0 2.0 1.9 2.4 1.6 2 1 1 1 2.3 1.2 1.5 1.8 2.3 2.0 2.1 1.9 2.9 2.1 2 1 1 2.3 1.0 1.5 1.3 3.3 1.7 1.8 2.0 1.8 1.8 2 1 1 1 1.2 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.2 1.4 2.1 1.2 1 1 1 1 1.3 1.0 1.2 1.1 2.7 1.7 2.0 2.0 2.0 2.0 1.1 2 1 1 1 1.5 1.3 1.7 1.5 3.7 2.3 2.2 1.8 1.9 1.5 2 1 1 1 1.8 1.3 2.2 1.7 3.3 2.0 2.5 2.4 2.2 1.8 2 1 1 1 1.7 1.3 2.0 1.8 3.7 1.7 2.2 1.9 1.9 1.9 1.9 2 1 1 1 2.4	5-14	5-18	5-15	5-13	5-14	5-13	5-21	5-13	5-19	5-26	5-21	5-26	5-21	5-26
1.2 1.3 1.4 2.3 2.0 2.0 1.5 1.7 2.0 2 1 1 1 1.1 1.1 1.2 1.3 2.5 4.0 2.3 2.3 2.0 2.7 2.4 2 1 1 1 1 2.7 1.2 1.3 1.6 2.0 1.3 1.9 1.5 1.2 1.6 2 1 1 1 1 2.8 1.7 2.7 1.5 3.2 2.0 2.0 1.9 2.4 1.6 2 1 1 1 2.3 1.0 1.5 1.3 3.3 1.7 1.8 2.0 1.8 1.8 2 1 1 1 2.3 1.0 1.5 1.3 3.3 1.7 1.8 2.0 1.8 1.8 2 1 1 1 1.2 1.2 1.0 1.0 1.0 1.0 1.0 1.0 1.2 1.4 2.1 1.2 1 1 1 1.3 1.0 1.2 1.1 2.7 1.7 2.0 2.0 2.0 2.0 1.1 2 1 1 1 1.5 1.3 1.7 1.5 3.7 2.3 2.2 1.8 1.9 1.5 2 1 1 1 1.5 1.3 1.7 1.5 3.7 2.3 2.2 1.8 1.9 1.5 2 1 1 1 1.8 1.8 1.8 1.3 2.2 1.7 3.3 2.0 2.5 2.4 2.2 1.8 2 1 1 1 1.7 1.8 1.7 1.3 2.0 1.8 3.7 1.7 2.2 1.9 1.9 1.9 2 1 1 1 2.4	108	100	106	119	120		111		101		128	122	111	105
1.2 1.3 2.5 4.0 2.3 2.0 2.7 2.4 2 1 1 1 2.7 1.2 1.3 1.6 2.0 1.3 1.9 1.5 1.2 1.6 2 1 1 1 2.8 1.7 2.7 1.5 3.2 2.0 2.0 1.9 2.4 1.6 2 1 1 1 2.8 1.2 1.5 1.8 2.3 2.0 2.1 1.9 2.9 2.1 2 1 1 2 2.3 1.0 1.5 1.3 3.3 1.7 1.8 2.0 1.8 1.8 2 1 1 1 2.3 1.0 1.0 1.0 1.0 1.2 1.4 2.1 1.2 1 1 1 1.3 1.0 1.2 1.7 2.0 2.0 2.0 1.1 2 1 1 1 1.5 1.3 1.7 1.5 3.7 2.3 2.2 1.8 1.9 1.5 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>LODGI</td><td>NG (sco</td><td>re)</td><td></td><td></td><td></td><td></td><td></td></t<>							LODGI	NG (sco	re)					
1.2 1.3 2.5 4.0 2.3 2.0 2.7 2.4 2 1 1 1 2.7 1.2 1.3 1.6 2.0 1.3 1.9 1.5 1.2 1.6 2 1 1 1 2.8 1.7 2.7 1.5 3.2 2.0 2.0 1.9 2.4 1.6 2 1 1 1 2.8 1.2 1.5 1.8 2.3 2.0 2.1 1.9 2.9 2.1 2 1 1 2 2.3 1.0 1.5 1.3 3.3 1.7 1.8 2.0 1.8 1.8 2 1 1 1 2.3 1.0 1.0 1.0 1.0 1.2 1.4 2.1 1.2 1 1 1 1.3 1.0 1.2 1.7 2.0 2.0 2.0 1.1 2 1 1 1 1.5 1.3 1.7 1.5 3.7 2.3 2.2 1.8 1.9 1.5 <t< td=""><td>1.2</td><td>1 3</td><td>1 ц</td><td>2 3</td><td>2 0</td><td>2 0</td><td>1 5</td><td>1 7</td><td>2 0</td><td>*</td><td>1</td><td>1</td><td>1</td><td>1 1</td></t<>	1.2	1 3	1 ц	2 3	2 0	2 0	1 5	1 7	2 0	*	1	1	1	1 1
1.2 1.3 1.6 2.0 1.3 1.9 1.5 1.2 1.6 2 1 1 1 2.8 1.7 2.7 1.5 3.2 2.0 2.0 1.9 2.4 1.6 2 1 1 1 2.3 1.2 1.5 1.8 2.3 2.0 2.1 1.9 2.9 2.1 2 1 1 2 2.3 1.0 1.5 1.3 3.3 1.7 1.8 2.0 1.8 1.8 2 1 1 1 1.2 2.3 1.0 1.0 1.0 1.0 1.2 1.4 2.1 1.2 1 1 1 1.3 1.0 1.2 1.1 2.1 1.2 1 1 1 1.3 1.0 1.2 1.7 2.0 2.0 2.0 1.1 2 1 1 1 1.5 1.3 1.7 1.5 3.7 2.3 2.2 1.8 1.9 1.5 2 1 1 1<														
1.7 2.7 1.5 3.2 2.0 2.0 1.9 2.4 1.6 2 1 1 1 2.3 1.2 1.5 1.8 2.3 2.0 2.1 1.9 2.9 2.1 2 1 1 2 2.3 1.0 1.5 1.3 3.3 1.7 1.8 2.0 1.8 1.8 2 1 1 1 1.2 1.0 1.0 1.0 1.0 1.2 1.4 2.1 1.2 1 1 1 1.3 1.0 1.2 1.1 2.7 1.7 2.0 2.0 2.0 1.1 2 1 1 1.3 1.3 1.7 1.5 3.7 2.3 2.2 1.8 1.9 1.5 2 1 1 1 1.8 1.3 2.2 1.7 3.3 2.0 2.5 2.4 2.2 1.8 2 1 1 1 1.7 1.3 2.0 1.8 3.7 1.7 2.2 1.9														
1.0 1.5 1.3 3.3 1.7 1.8 2.0 1.8 1.8 2 1 1 1 1.2 1.0 1.0 1.0 1.0 1.2 1.4 2.1 1.2 1 1 1 1 1.3 1.0 1.2 1.1 2.7 1.7 2.0 2.0 2.0 1.1 2 1 1 1 1.5 1.3 1.7 1.5 3.7 2.3 2.2 1.8 1.9 1.5 2 1 1 1 1.8 1.3 2.2 1.7 3.3 2.0 2.5 2.4 2.2 1.8 2 1 1 1 1.7 1.3 2.0 1.8 3.7 1.7 2.2 1.9 1.9 1.9 2 1 1 1 2.4														
1.0 1.5 1.3 3.3 1.7 1.8 2.0 1.8 1.8 2 1 1 1 1.2 1.0 1.0 1.0 1.0 1.2 1.4 2.1 1.2 1 1 1 1 1.3 1.0 1.2 1.1 2.7 1.7 2.0 2.0 2.0 1.1 2 1 1 1 1.5 1.3 1.7 1.5 3.7 2.3 2.2 1.8 1.9 1.5 2 1 1 1 1.8 1.3 2.2 1.7 3.3 2.0 2.5 2.4 2.2 1.8 2 1 1 1 1.7 1.3 2.0 1.8 3.7 1.7 2.2 1.9 1.9 1.9 2 1 1 1 2.4	1.2	1.5	1.8	2.3	2.0	2.1	1.9	2.9	2.1	2	1	1	2	2.3
1.0 1.0 1.0 1.0 1.2 1.4 2.1 1.2 1 1 1 1 1.3 1.0 1.2 1.1 2.0 2.0 2.0 1.1 2 1 1 1 1.5 1.3 1.7 1.5 3.7 2.3 2.2 1.8 1.9 1.5 2 1 1 1 1.8 1.3 2.2 1.7 3.3 2.0 2.5 2.4 2.2 1.8 2 1 1 1.7 1.3 2.0 1.8 3.7 1.7 2.2 1.9 1.9 2 1 1 1 2.4														
1.0 1.2 1.1 2.7 1.7 2.0 2.0 2.0 1.1 2 1 1 1 1.5 1.3 1.7 1.5 3.7 2.3 2.2 1.8 1.9 1.5 2 1 1 1 1.8 1.3 2.2 1.7 3.3 2.0 2.5 2.4 2.2 1.8 2 1 1 1 1.7 1.3 2.0 1.8 3.7 1.7 2.2 1.9 1.9 2 1 1 1 2.4													1	
1.3 2.2 1.7 3.3 2.0 2.5 2.4 2.2 1.8 2 1 1 1 1.7 1.3 2.0 1.8 3.7 1.7 2.2 1.9 1.9 1.9 2 1 1 1 2.4													1	
1.3 2.2 1.7 3.3 2.0 2.5 2.4 2.2 1.8 2 1 1 1 1.7 1.3 2.0 1.8 3.7 1.7 2.2 1.9 1.9 1.9 2 1 1 1 2.4	1.3	1.7	1.5	3.7	2.3	2.2	1.8	1.9	1.5	2	1	1	1	1.8
1.3 2.0 1.8 3.7 1.7 2.2 1.9 1.9 1.9 2 1 1 1 2.4							2.4	2.2			1	1	1	1.7
								1.9	1.9				1	
					1.7	1.6	1.5	2.0	2.1	1	1	1	1	1.1

			N.Y.	Onta	rio		Ohio		Mi	chigan	Ind	iana		onsin
Strain	1	Mean	Aur-	Ridge-	-Har-			-Col-	_	Peters-		Lafay-		Mad-
			ora	town	row	ville	ter	umbus	inaw	burg	Knox	ette	and	ison
	18	Test	ts			PLANT	HEIG	HT (in	ches)					
Chippewa	611	34		35	23	33	22*	28*	34	24	37	40	30	27
SL8	04	34		37	23	32	24	28	32	24	35	40	30	28
Hark		35		38	19	35	21	24	33	22	34	44	27	26
A66-1240-	-2	31		31	20	29	20	25	33	22	31	38	30	29
L68-4241		33		35	21	34	21	29	34	28	36	40	27	27
Steele		33		37	24	31	21	31	30	22	34	40	32	29
M61-224		30		31	18	29	18	29	26	18	33	38	28	25
M62-93		29		30	20	27	18	23	27	18	31	37	27	26
M62-263		31		31	20	30	21	25	27	20	31	38	28	26
M62-275		34		35	20	31	20	31	33	20	38	41	29	29
M62-345		33		35	21	32	19	31	30	21	36	41	29	27
M63-17		34		36	23	34	21	29	33	26	37	42	30	27
	15	Test	ts			SEED (QUALI'	TY (sc	ore)					
Chippewa		1.7		3	2.0	<u>.</u>	1.5	2.0			1.5	1.5		*
SL8	04	2.2		3	2.0	1.8	1.8	1.5			2.0	2.0		3
Hark		1.6		3	2.0	1.3	1.0	1.0			1.5	1.5		2
A66-1240-	-2	2.0		4	1.7	1.3	1.5	1.5			2.0	2.0		2
L68-4241		1.6	5	2	1.7	1.3	1.5	1.0			2.0	1.0		2
Steele		1.6		3	2.0	1.3	1.3	1.0			1.5	1.0		3
M61-224		1.8	3	3	2.3	1.5	1.8	1.0			1.5	1.0		3
M62-93		1.7	7	3	2.3	1.5	1.8	1.0			2.0	1.0		2
M62-263		2.1	l	3	1.7	1.3	1.0	1.2			2.0	1.5		2
M62-275		1.8	3	3	2.3	2.0	1.3	1.0			2.0	1.5		2
M62-345		1.8	3	3	1.7	1.2	1.3	1.0			2.0	1.5		2
M63-17		2.0)	4	2.3	1.5	2.0	1.2			2.0	1.0		3
	14	Test	ts			SEE	D SIZ	E (g/l	00)					
Chippewa	64	15.6	5	17.5	16.7	14.7	17.4	18.8	15	16	15.7	16.1		
SL8	54	15.4			15.6			17.9	16	16	15.7	15.1		
Hark		16.6			15.2			17.9	17	15	15.0	17.7		
A66-1240-	-2	19.			20.0			21.9	19	19	20.2	20.6		
L68-4241		15.		17.7	15.0	15.1	17.2	18.2	15	17	16.1	14.6		
Steele		17.3			21.3			18.2	16	16	16.3			
M61-224		16.4			17.6			18.8	16	16	16.8			
M62-93		16.4			15.9			14.4	16	16	17.3	16.3		
M62-263		20.4	4	25.9	20.6	18.7	19.6	21.8	20	19	20.7	20.2		
M62-275		18.4			18.2	19.6		19.9	17	19	18.9	19.0		
M62-345		18.2			18.3			19.9	19	16	18.8	17.4		
M63-17		16.3	l	19.2	17.2	16.3	16.5	17.3	17	16	16.1	14.5		

	llino		Minnes		Iowa	a	Miss	souri	N.Dak.	S. I	Dakota	Nebr	aska
De-	Pon-		Lamb-		Suth-	Kan-		- Col-	Oakes	Rev-	Brook-	Con-	Mead
kalb	tiac	bana	erton	seca	erland	awha	ard	umbia	I	illo	ings	cord	I
					PL	ANT HE	IGHT (inches)					
31	36	34	33	35	39	36	36	31		27	32	26	40
32	36	35	36	32	40	37	35	31		28	30	28	41
32	38	38	40	35	41	38	35	30		30	33	32	44
31	34	31	32	32	37	35	32	26		29	30	25	36
31	34	35	35	31	39	36	34	31		28	29	30	40
31	38	32	35	32	37	36	33	28		28	32	26	38
30	34	28	33	29	35	32	27	22		26	32	26	36
29	31	24	33	30	36	30	28	21		29	30	26	36
31	32	32	32	31	38	35	35	27		26	29	27	37
34	35	35	34	34	38	35	34	29		29	32	29	38
32	36	36	36	29	41	37	35	29		27	30	27	38
33	35	35	36	33	38	38	33	29		28	36	29	40
					SE	ED QUA	LITY (score)					
1.6	1.4	2.3	2.7	2.3	1.0	1.0		2.5	*	1.5	2.2		1.0
1.9	1.4	2.7	3.0	2.7	1.5	1.0		2.8	2	3.0	2.5		1.3
1.5	1.2	1.7	1.7	1.3	1.0	1.0		2.5	2	1.0	1.2		1.5
1.7	1.9	2.0	3.3	3.0	1.0	1.0		2.5	2	1.0	1.2		1.1
1.2	1.5	2.2	1.7	1.7	1.0	1.0		2.6	2	1.0	1.7		1.1
1.2	1.4	1.7	2.0	2.0	1.0	1.0		2.4	1	1.2	2.0		1.1
1.8	2.0	2.8	2.0	2.3	1.0	1.0		2.5	2	1.1	1.2		1.1
1.6	1.5	2.2	1.7	2.0	1.0	1.0		2.4	2	1.1	1.7		1.3
1.9	2.0	3.3	3.0	2.3	1.5	1.3		2.5	2	2.2	2.2		1.1
1.6	1.8	2.7	2.7	1.3	1.0	1.0		2.5	1	1.2	1.7		1.2
1.7	2.2	2.5	2.0	1.7	1.0	1.0		2.2	1	1.2	2.0		1.1
1.9	1.8	2.3	2.3	2.3	1.0	1.0		2.7	1	1.2	1.7		1.2
						SEED S	IZE (g	/100)					
13 0	13 0	16.0	14.1	15.0	15.9				* 14.4	15.9	16.4		16.4
		15.3		14.4	15.9				12.8	16.8	15.5		16.8
		15.0	16.1	15.8	16.3				13.2	18.8	17.4		16.4
		19.7	19.0	18.5	19.8				17.9	20.8	19.6		20.7
	12.3		13.6	14.0	15.2				11.9	16.9	15.9		16.7
		16.8	15.5	16.3	17.1				16.1	18.5	17.6		18.4
		15.7	15.8	16.1	16.0				16.2	17.6	16.8		17.5
	14.7		16.5	15.8	16.4				15.9	16.9	14.4		18.7
17.6	16.4	21.0	19.2	18.7	20.1				18.5	22.5	20.0		22.7
		18.9	17.0	15.4	18.6				17.9	20.1	18.4		19.5
		17.8	16.2	18.1	17.4				16.3	19.4			18.3
		15.8	14.6	14.9	16.0				15.2	17.2	16.1		18.2

Strain	Mean	Ont. Ridge-	Ohio Col-	Mich. Sag-		Mad-		Ur-	Minn. Wa-			S.Dak. Brook-	Mead
		town	umbus	inaw	Knox	ison	kalb	bana	seca	awha	umbia	ings	<u>I</u>
1:	2 Tes	ts			PRO'	TEIN ((%)						
Chippewa 64 SL8 Hark A66-1240-2	41.8 42.8	40.5 41.9 44.3 45.0	41.0 41.2 40.1 43.3	40.3 40.5 40.5 43.3	42.1 43.1	43.5 44.4 46.1 48.2	41.6 42.0	42.0 43.7	40.1 40.8	41.4 41.7 43.1 45.0	40.6 40.8 41.4 41.5	43.3 44.5 46.0 46.7	39.2 41.0 42.0 42.6
L68-4241 Steele M61-224 M62-93	40.2 39.6	41.3 42.0 39.4 39.8	38.0 39.2 39.7 39.7	38.6 37.7 39.2 39.5	40.1 39.3	43.3 43.6 42.1 41.7	41.2 39.8	39.7 38.4	38.9 37.9	41.0 40.1 39.1 39.0	39.8 38.0 39.0 38.2	43.8 44.3 43.5 43.3	39.4 38.1 37.9 38.6
M62-263 M62-275 M62-345 M63-17	39.4 41.0	40.8 41.1 41.9 42.0	38.8 38.4 40.0 39.2	39.1 39.1 39.8 39.1	39.8 42.5	41.9 42.3 43.2 43.9	39.5 40.9	37.5 41.5	37.5 39.6	40.6 39.8 41.5 41.3	39.0 37.1 38.6 38.3	42.1 42.6 43.4 42.7	40.3 38.2 38.7 39.6
12	2 Tes	ts			0	IL (%)						
Chippewa 64 SL8 Hark A66-1240-2	21.2 20.9	20.1 20.0 20.1 18.9	22.0 21.5 22.5 20.9	21.6 22.5 22.0 20.5	21.2 19.8	19.8 20.3 19.7 18.6	21.9 21.4	20.8	21.6 21.8	21.0 21.0 20.3 19.8	21.2 21.8 21.8 21.1	19.4 19.7 19.7 18.7	22.2 21.9 21.2 20.9
L68-4241 Steele M61-224 M62-93	21.5 22.3	20.6 20.1 21.5 22.0	22.2 22.7 23.2 24.1	22.3 22.0 22.0 22.7	21.6 22.6	20.9 19.8 21.3 21.9	21.4 22.8	22.2 22.9	21.8 22.5	21.4 21.0 22.3 22.4	22.2 22.7 22.8 23.2	19.9 20.2 20.4 20.7	22.3 22.3 23.8 24.4
M62-263 M62-275 M62-345 M63-17	22.1 21.9	21.0 20.8 20.9 20.8	23.2 23.6 22.9 23.2	22.2 21.5 22.5 22.9	22.6 21.1	21.1 21.1 21.1 20.8	22.0 22.8	22.7 22.0	22.5 21.7	21.8 21.5 21.3 21.7	23.0 23.7 23.0 23.0	20.2 19.7 20.6 20.6	23.3 23.4 23.2 23.3

Stra	in	Parentage	Generation Composited
1. 2.	Chippewa 64 Hark		
3. 4.	H140-673 H140-1367	L4(C1128-Rps rxp) x L2(Harosoy-Rps rxp)	F ₅ F ₅
5. 6. 7.	H142-2894 M <u>61</u> -229 M63-147	L4 x AX56P64-1(Amsoy) Merit x Harosoy O-57-2921(Blackhawk x Capital) x	F ₅ F ₅
8.	M63-175	M406(Harosoy x Norchief) Hawkeye 63 x Corsoy	F ₅ F ₅
9. 10. 11. 12.	M63-194 M63-211 M63-217 M <u>63</u> -229	Corsoy x PI 132.207(from Netherlands in 1939) Harosoy 63 x Corsoy Corsoy x M372(M10 x PI 180.501) M402(Renville x Capital) x M406(Harosoy x Norchief)	F ₅ F ₅ F ₅
13. 14. 15. 16.	OX-350 W7-184 W7-186 W7-193	Harosoy 63 x Harman W7-2334(Seneca x Chippewa) x Chippewa 64	F4 F ₅ F ₅ F ₅
17. 18. 19.	W8-7 W8-9 W8-37	" " "	F ₅ F ₅ F ₅

This test was grown at 11 locations this year, mostly in bordered-row plots. A few strains yielded as well as or better than the mean of the Hark checks and most of the strains outyielded the early check, Chippewa 64. Three strains, M63-175, OX-350, and W8-37, were definitely earlier than Chippewa 64. Of these, M63-175 was highest in yield, almost 2 bushels above Chippewa 64 and almost 4 days earlier. It also appears to have a high level of shattering resistance. W8-37 was close behind it in performance and may be Phytophthora-resistant.

Several strains were of about the same maturity as Chippewa 64, with M63-217 being outstanding in mean yield, averaging 6 bushels above Chippewa 64 and slightly above Hark. Among the later strains, the two top performers were M63-194, which ranked first in mean yield in the test, almost a bushel above Hark, and M63-229 (the underline is to avoid confusion with M61-229), which equalled Hark's yield and was 3 days earlier. The three H strains were much later in maturity than Hark and must be considered to belong to Group II.

PRELIMINARY TEST I, 1971

Regional Summary

			Matu-	Lodg-		Seed	Seed	Seed Compo	sition
Strain	Yield	Rank	rity	ing	Height	Quality	Size	Protein	0i1
No. of Tests	7	7	6	7	77	6	6	6	6
Chippewa 64	38.4	18	9-13	1.6	34	1.7	16.3	41.8	20.8
Hark	44.0	4	+ 7.8	1.7	38	1.4	17.9	43.6	20.8
H140-673	38.9	16	+13.5	2.0	41	1.7	17.8	41.1	21.2
H140-1367	40.0	12	+11.5	2.1	38	1.8	18.7	40.5	21.3
H142-2894	39.9	13	+13.5	1.8	43	1.9	17.3	41.3	20.6
M <u>61</u> -229	39.5	14	+ 2.7	1.8	36	1.4	19.0	41.7	21.7
M63-147	40.9	8	- 0.3	1.8	34	1.7	17.9	42.4	20.6
M63-175	40.1	11	- 3.8	1.3	31	1.3	15.9	41.6	22.0
M63-194	45.9	1	+ 7.0	2.1	38	1.5	17.5	41.1	21.7
M63-211	41.8	6	+ 0.5	1.8	34	1.4	17.3	40.8	21.8
M63-217	44.7	2	- 0.3	1.4	32	1.5	17.7	40.4	23.0
M <u>63</u> -229	44.4	3	+ 4.5	2.1	38	1.5	18.2	40.4	22.1
0 x-3 50	37.2	19	- 1.5	2.0	34	1.6	18.5	44.6	19.3
W7-184	38.6	17	+ 0.8	1.7	35	1.5	17.0	40.2	20.4
W7-186	42.1	5	+ 1.0	1.6	36	1.4	17.8	40.1	21.1
W7-193	40.7	9	+ 3.2	1.7	37	1.6	17.7	40.8	21.2
w8-7	41.4	7	+ 2.8	1.4	36	1.7	17.2	41.1	20.7
W8-9	40.6	10	+ 3.2	1.4	36	1.5	17.2	41.3	20.8
W8-37	39.0	15	- 3.0	1.4	34	1.6	16.9	40.5	20.9

Disease Data

		В	BP	BS	BS	R	FE ₂	P	R
Strain	Urb. Ill. nl	Ames Iowa n	Urb. Ill. a2 al	Laf. Ind. n	Laf. Ind. n %	Urb. Ill. n %	Laf. Ind. a	Laf. Ind. a	Ames Iowa a
Chippewa 64	1	2	S 3	4	47	50	4	R	Н
Hark	2	2	S 1	4	41	60	5	S	S
H140-673	2	2	R 1	3	23	40	4	R	R
H140-1367	3	2	R 1	3	76	50	5	R	R
H142-2894	3	2	R 1	4	25	60	4	R	R
M <u>61</u> -229	1	2	S 2	5	44	60	5	R	R
M63-147	1	1	S 2	5	23	30	5	R	R
M63-175	1	2	S 3	5	25	40	4	S	S
M63-194	1	2	S 2	5	44	30	4	s	s
M63-211	2	2	S 2	4	25	60	3	R	R
M63-217	2	2	S 2	5	62	50	4	S	S
M <u>63</u> -229	2	2	S 1	3	52	30	4	S	S
0x- 350	1	2	s 3	4	43	50	4	н	R
W7-184	2	1	S 3	4	37	30	3	R	R
W7-186	1	2	S 3	3	30	20	4	R	R
W7 - 193	1	2	s 3	5	32	60	4	R	R
w8-7	1	2	s 3	4	0	50	4	S	S
W8-9	1	2	S 2	3	0	30	4	H	S S
W8-37	3	2	S 2	4	50	30	4	R	S

Descriptive and Shattering Data

		Shattering
Strain	Descriptive	Kansas
	Code	2 wk. 4 wk.
Chippewa 64	PTNBr SYB1	1 2
Hark	PGNBr DYY	4 5
H140-673	PGN- DYBF	4 5
H140-1367	PGN— DYY	4 5
H142-2894	PGN- SYY	2 5
M <u>61</u> -229	WGN- D+SYY	3 5
M63-147	W-N- DYY	3 3
M63-175	PGN— DYY	1 1
M63-194	P-N- DYY	1 3
M63-211	PGN— DYY	4 5
M63-217	P-N- SYY	4 5
M <u>63</u> -229	P-N- DYY	2 5
0x- 350	PTN— DLgB1	3 5
W7-184	PTN- DYB1	1 2
W7-186	PTN- DYB1	1 3
W7-193	PTN- SYB1	1 4
W8-7	P-N- DYB1	1 2
W8-9	P-N- DYB1	1 4
W8-37	P-N- SYB1	1 1

		Cutario	Ohio	Mich.	Wis.	I11.	Minne	sota	I	owa	S.Dak.	Neb.
Strain		Ridge-			Madi-		Lamb-		Suther-	Kana-	Brook-	
		town	ville	_	son	kalb	erton	seca	land	wha	ings	I
	7 Test	ts		19	71 YIE	LD (bu	1/a)					
			*	-	*		*	*				
Chippewa 64	38.4	44.4	31.5	31.8	19.9		35.0	36.7	42.7	39.8	30.3	40.4
Hark	44.0	57.1	30.6	33.5	29.3		34,8	34.6	46.8	45.8	34.4	49.6
H140-673	38.9	57.1	38.0	29.3	23.8		28.8	36.1	44.3	39.2	20.1	43.4
H140-1367	40.0	59.1	30.3	29.1	27.8	36.7	31.9	31.6	44.4	40.0	24.4	46.0
H142-2894	39.9	51.4	26.7	33.5	23.8		27.1	34.9	42.3	43.3	27.3	45.0
M <u>61</u> -229	39.5	48.3	32.7	29.4	25.5		35.5	33.1	43.4	39.8	28.7	48.7
M63-147	40.9	50.9	20.8	28.2	22.5		40.8	37.3	48.7	43.9	28.3	50.6
M63-175	40.1	45.8	29.9	31.9	22.8	36.5	39.8	39.1	50.3	40.6	32.2	43.2
M63-194	45.9	61.0	36.9	34.2	34.5	41.6	41.0	47.6	52.2	45.6	32.2	54.5
M63-211	41.8	57.1	36.6	30.1	22.8	38.5	40.6	35.9	52.2	43.4	27.8	43.8
M63-217	44.7	58.2	37.0	33.3	30.4	41.3	38.8	41.9	53.5	46.0	33.7	46.8
M <u>63</u> -229	44.4	59.5	34.2	32.0	30.6	40.0	34.4	36.4	47.4	47.3	35.7	48.9
ox-350	37.2	47.0	29.8	28.2	21.2	34.3	33.8	37.0	46.6	39.5	27.6	37.5
W7-184	38.6	47.4	35.3	31.9	28.2		31.3	33.3	45.2	38.3	31.8	41.2
W7-186	42.1	47.5	37.1	33.1	32.8	42.1	35.1	37.4	45.9	45.0	34.9	46.0
W7-193	40.7	49.7	33.9	33.0	29.8	38.4	30.7	37.9	45.8	44.4	28.0	45.7
W8-7	41.4	44.6	32.5	32.4	29.1	39.7	35.1	37.7	46.1	44.1	35.1	47.6
W8-9	40.6	51.2	32.1	29.5	28.9		41.4	37.0	46.4	44.6	27.2	47.5
W8-37	39.0	48.1	30.5	30.2	28.5		37.2	35.7	44.7	40.7	28.6	42.3
Coef. of Var	. (%)	6.5		14.0	8.1	6.3	10.3	8.2	3.1	6.1	11.8	6.8
L.S.D. (5%)	• (%)	7.1		9.0	6.7	5.0	7.4	6.2	3.0	5.5	6.6	6.3
Row Spacing	(in.)	24	32	28	36	30	30	30	27	27	30	30
Rows/Plot	,	4	3	3	1	3	2	2	4	4	3	4
Reps		2	2	2	2	2	2	2	2	2	2	2
					•							
	7 Test	s			YIELD	RANK						
			*		*		*	*				
Chippewa 64	18	19	12	11	19	7	11	10	18	15	9	18
Hark	4	5	13	2	6	4	12	16	7	3	4	3
H140-673	16	5	1	16	13	8	18	12	16	18	19	14
H140-1367	12	3	15	17	11	14	15	19	15	14	18	9
H142-2894	13	8	18	2	13	14	19	15	19	11	16	12
M <u>61</u> -229	14	12	9	15	12	9	8	18	17	15	10	5
M63-147	8	10	19	18	17	17	3	7	5	9	12	2
M63-175	11	17	16	9	15	16	5	3	4	13	6	15
M63-194	1	1	4	1	1	2	2	1	2	4	6	1
M63-211	6	5	5	13	15	9	4	13	2	10	14	13
M63-217	2	4	3	4	4	3	6	2	1	2	5	8
M <u>63</u> -229	3	2	7	8	3	5	13	11	6	1	1	4
0 x- 350	19	16	17	18	18	19	14	8	8	17	15	19
W7-184	17 5	15 14	6 2	9 5	10 2	18 1	16	17	13	19	8	17
W7-186 W7-193	9	11	8	6	5	11	9 17	6 4	11 12	5 7	3 13	9 11
W8-7	7	18	10	7	7	6	9					
W8-9	10	9	11	14	8	13	1	5 8	10 9	8 6	2 17	6 7
₩8-37	15	13	14	12	9	12	7	14	14	12	îí	16

		ntario		Mich.			Minne	sota	Io	wa	S.Dak.	Neb.
Strain		Ridge-			Madi-	De-	Lamb-	Wa-	Suther-	Kana-	Brook-	
		town	ville	naw	son	kalb	erton	seca	land	wha	ings	I
	6 Test	s	1	MATURI	TY (re	lativ	e date)				
			*		*		*	*				
Chippewa 64		9-15	9- 9	9-18	9-20	8-30	9-12	9-12		9-13	9-25	9- 8
Hark	+ 7.8	+14	+ 5	+ 5	+ 4	+11	+ 9	+ 6		+ 7	+ 6	+ 4
H140-673	+13.5	+19	+12	+ 7	+ 7	+22	+12	+10		+13	+11	+ 9
H140-1367	+11.5	+17	+11	+ 7	+ 5	+17	+11	+ 8		+11	+ 9	+ 8
H142-2894	+13.5	+19	+11	+ 7	+ 5	+22	+14	+12		+13	+11	+ 9
M <u>61</u> -229	+ 2.7	+ 2	+ 1	- 1	0	+12	+ 4	- 2		0	+ 1	+ 2
M63-147	- 0.3	+ 8	+ 4	- 3	+ 4	+ 1	+ 2	- 5		- 3	- 5	0
M63-175	- 3.8	- 5	+ 2	- 3	+ 1	- 3	- 1	- 3		- 6	- 5	- 1
M63-194	+ 7.0	+15	+ 5	+ 2	+ 3	+ 9	+ 8	+ 2		+ 5	+ 4	+ 7
M63-211	+ 0.5	+ 6	0	- 1	0	+ 1	- 2	- 4		- 2	- 2	+ 1
M63-217	- 0.3	+ 4	0	- 1	- 1	0	- 2	- 2		- 4	- 2	+ 1
M <u>63</u> -229	+ 4.5	+14	+ 3	0	+ 3	+ 7	+ 4	0		+ 3	+ 2	+ 1
0x- 350	- 1.5	+ 2	+ 2	- 2	+ 2	- 3	- 2	- 2		- 3	- 1	- 2
W7-184	+ 0.8	+ 1	0	+ 2	0	+ 1	0	- 1		- 1	+ 2	0
W7-186	+ 1.0	+ 1	0	+ 2	- 5	+ 2	+ 1	- 1		- 1	+ 2	0
W7-193	+ 3.2	+ 5	- 1	+ 3	- 3	+ 4	+ 3	+ 1		+ 2	+ 3	+ 2
W8-7	+ 2.8	+ 3	+ 1	+ 3	- 1	+ 5	+ 2	0		0	+ 5	+ 1
w8-9	+ 3.2	+ 6	+ 4	+ 3	Ò	+ 6	+ 6	0		0	+ 3	+ 1
w8-37	- 3.0	- 3	- 1	- 2	- 1	- 3	- 3	- 4		- 5	- 3	- 2
Merit (0)		- 5	0	- 4	- 14	- 6	- 9	- 5				
Corsoy (II)		+14	+ 9	+ 3	+ 4	+13	+ 8	+ 4			+ 7	+ 8
Date Planted	5-22	5 - 18	5-19	5-29	5-19	5 - 14	5-13	5 - 14	5-13	5-21	5-26	5-26

Str	rain	Parentage	Generation Composited	Previous Testing*
1.	Amsoy 71 Beeson	Amsoy ⁸ x Cl253(Blackhawk x Harosoy) Cl253 x Kent	4 F ₃ lines	2 4
3. 4.	Corsoy C1470	Harosoy x Capital Cl266R(Harosoy x Cl079) x Cl253	F ₆	7 2

^{*} Number of years in this test or name of last year's test.

This test was grown at 40 locations in 1971 but 11 were left out of the regional mean because of either a high or missing C.V., unbordered plots, out of north-central area or late submission of data. Despite large significant differences in yield at many locations the 29-location mean yield for the four entries were almost identical. At several locations Phytophthora rot probably affected the yield of Corsoy, the only susceptible entry. C1470 has been in the test three years and the three-year mean table shows it yielding almost as well as Amsoy 71 and Beeson, ripening slightly earlier than Corsoy, and with the best lodging resistance in the test. It appears to be relatively poor in shattering resistance. It is being considered for release as a replacement for Corsoy where Phytophthora resistance is needed and Amsoy 71 and Beeson are too late (southern Ontario, Michigan, Wisconsin, and Minnesota, for example).

Disease Data

		BE	3			BP		BS		
Strain	Urba Ill:	ana inois	Ames Iowa		Urbana Illinois		Ames Iowa	Lafayette Indiana	Ames Iowa	
	nl	n2	n	a	a2	al	n	n	n	
Amsoy 71	3	4.0	2	3	S	3	4	2	2	
Beeson	4	3.3	2	3.5	S	3	4.5	2	3.5	
Corsoy	2	2.3	2	3.5	S	2	4.5	3	4	
C1470	3	4.7	2	4	S	2	4	4	2.5	

		BSR		DM	FE ₂	PM		PR		PSB
Strain	Laf. Ind.	Urb. Ill.	St.P. Minn.	Bel. Ill.	Laf. Ind.	Har. Ont.	Laf. Ind.	Ames Iowa	Stnv. Miss.	Mid. N.J.
	n %	n %	n %	n	a	a	a	a	n	n
Amsoy 71	19	60	55	2.6	4	S	R	R	1	1.8
Beeson	46	40	95	2.9	1	R	R	R	1	1.3
Corsoy	5	50	20	2.9	5	S	S	S	5	2.1
C1470	17	50	70	4.0	1	S	R	R	2	1.6

Descriptive and Shattering Data

							Shatte	ering			Нуро-
			Per-	Fluor-	Kans	as		Illin	ois		cotyl
Strain	Descr	iptive	oxi-	escent	Manh	attan	Miss.	Carbon	ndale	New Jersey	Length
	Code		dase	Light	2 wk.	4 wk.	Stoneville	4 wk.	6 w k	.Middlebush	cm
Amsoy 71	PGNTn	SYY	Н	L	3	5	2	1	3	1.8	12
Beeson	PGNBr	SYIb	L	L	4	5	3	1	4	1.0	15
Corsoy	PGNBr	DYY	Н	E	1	3	3.5	1	2	1.2	22
C1470	\mathtt{PGNBr}	DYIb	L	L	4	5	5	4	5	1.0	16

Regional Summary

			Matu-	Lodg-		Seed	Seed	Seed Composition	
Strain	Yield	Rank	rity	ing	Height	Quality	Size	Protein	Oil
				197	1				
No. of Tests	29	29	22	28	_ 28	26	21	16	16
Amsoy 71	45.2	4	+2.9	2.1	41	1.8	16.6	39.8	22.6
Beeson	45.6	1	+5.4	1.9	39	2.0	18.7	40.4	21.5
Corsoy	45.3	3	9-10+	2.4	38	1.7	15.4	40.1	22.3
C1470	45.6	1	+1.3	1.4	37	1.9	16.0	40.9	22.2

^{† 113} days after planting

1969-71, 3-year mean											
No. of Tests	89	89	71	84	88	75	67	46	46		
Amsoy 71	44.7	2	+3.0	2.4	42	2.1	17.1	39.7	22.5		
Beeson	45.1	1	+3.9	2.1	40	2.2	19.2	40.5	21.8		
Corsoy	44.0	4	9-17+	2.5	39	2.0	15.8	40.5	22.0		
C1470	44.3	3	-0.5	1.6	38	2.3	16.1	41.1	22.1		

^{† 116} days after planting

		N.Y.	Penn.	N.J.	Onta	rio		Ohio		Mid	chigan
Strain	Mean	Aur-	Univ.	Middle-	Ridge-		Hoyt-	Woos-	Col-	_	Peters-
		ora	Park	bush	town	row	ville	ter	umbus	inaw	burg
	29 Tes	ts		1971	YIELD (bu/a)					
		35.4	44.5	*	57.8	38.1	41.2	13.6	54.7	34.5	35 . 9
Amsoy 71 Beeson		36.6	41.8	22.9 25.1	55.2	40.3	35.0	19.7	46.6	35.7	35.9
Corsoy		38.4	37.9	19.2	58.3	35.2	35.6	16.9	33.5	33.6	34.1
C1470		36.4	36.1	21.9	59.4	41.4	38.2	14.9	43.7	31.6	37.8
C.V.(%)		5.6	7.7	21.6	5.7	18.9				8.0	18.0
L.S.D.(5%)		2.5	3.5	10.9	n.s.	n.s.				4.0	10.0
Row Sp.(in.)		30	30	24	24	32	32	28	28	38
Rows/Plot	•		3	3	4	4	3	3	3	3	3
Reps			4	4	4	3	4	4	4	4	4
				Y	ELD RAN	K					
Amsoy 71	4	* 4	* 1	* 2	3	- * 3	i	* 4	* 1	2	* 2
Beeson	1	2	2	1	4	2	4	ī	2	1	2
Corsoy	3	1	3	4	2	4	3	2	4	3	4
C1470	1	3	4	3	1	1	2	3	3	4	i
	89 Test	ts		1969-7	71 MEAN	YIELD					
Amsoy 71‡	44.7				58.0	38.2	32.8	30.7	52.8		
Beeson	45.1				53.8	39.6	30.7	35.1	51.7		
Corsoy	44.0				59.4	37.9	30.3	27.5	42.3		
C1470	44.3				55.1	40.3	33.0	31.0	50.5		
				Y	IELD RAN	K					
Amsoy 71	2				2	_ 3	2	3	1		
Beeson	ī				4	2	3	1	2		
Corsoy	4				1	4	4	4	4		
C1470	3				3	1	1	2	3		
	22 Test	ts		71 MATURI	TY (rel	ative	date)				
Amsoy 71	+2.9		* +4		+ 1	+*3	+6	* + 4	+ 2	+2	* +3
Beeson	+5.4		+6		+ 7	+ 4	+8	+ 4	+ 5	+4	+4
Corsoy†	9-10		10-6		9-29	9-15	9-18	9-13	+ 5 9-25		9-20
C1470	+1.3		-3		9-29 - 1	9-15 + 1				9-21	
C14/0	T1.3		-3		- 1	+ T	+8	+ 5	+ 2	+4	+5
Hark (I)			-4		- 1	- 2	-3	- 6	-14	-2	-6
Wayne (III)			+9		+16	+12		+15	+16		
y (111)			. 5		0	1	- -	113	110		

5-18

134

5-19

119

5-19

122

5-14

122

5-18

130

5-21

122

5-29

115

Date Planted 5-20 5-27

†Days to Mat. 113

6-1

127

6-11

--

^{*} Not included in the mean

[#] Mean of four sublines in 1969

a Trenton in 1969-70

		Indian	Wis.	Illin			
		_	Green-				Pon-
Knox	ton	ette	field	ington	ison	kalb	tiac
		1971	YIELD	(bu/a			
42.8	48.6	49.9	43.2	51.4	35.7	45.3	33.6
45.0	49.8	51.1	42.9	49.7	39.1	50.1	32.1
36.8	44.0	49.6	29.2	39.0	35.3	43.7	37.3
41.7	49.7	55.8	41.7	50.5	37.7	47.8	35.0
11.4	8.1	8.9	7.1	8.1	8.3	8.6	8.6
n.s.	n.s.	n.s.	4.3	5.9	4.4	7.2	7.2
38	30	38	38	38	36	30	38
3	3	3	3	3	1	4	4
4	4	4	4	4	4	3	3
		Y	IELD R	ANK			
2	3	3	1	1	* 3	3	3
1	1	2	2	3	1	1	4
4	4	4	4	4	4	4	1
3	2	1	3	2	2	2	2
		1969-	-71 MEA	N YIEL	D		
45.9	50.2	54.4	44.7	53.1	38.8	51.9	37.0
49.0	49.5	52.2	46.8	52.7	43.1	51.7	39.6
43.3	48.1	52.9	35.1	46.6	38.9	51.3	38.3
44.8	50.1	54.8	42.4	51.6	41.9	50.9	39.4
		3	IELD R	ANK			
2	1	2	2	1	4	1	4
1	3	4	1	2	1	2	1
4	4	3	4	4	3	3	3
•							
3	2	1	3	3	2	4	2
	2	1	3	3	2	4	2
			3 RITY (r		e date		2
+2							+ 6
	197	L MATUE	RITY (r + 5	elativ	e date	e)	
+2	<u>1971</u> + 5	+ 2 + 3	RITY (r + 5 + 5	relativ +3 +2	e date	+ 3 + 6	+ 6 + 6
+2 +8	1971 + 5 + 7	+ 2 + 3	RITY (r + 5 + 5	elativ	e date * +1 +3	+ 3 + 6	+ 6 + 6
+2 +8 9-24 -3	1977 + 5 + 7 9-19	+ 2 + 3 5 9-8	**************************************	+3 +2 9-7	e date *1 +3 9-24 +2	+ 3 + 6 9-12 + 2	+ 6 + 6 2 9-2
+2 +8 9-24	1977 + 5 + 7 9-19	+ 2 + 3 5 9-8 + 1	**************************************	+3 +2 9-7	e date * +1 +3 9-24	+ 3 + 6 9-12	+ 6 + 6 ? 9-2 + 4
+2 +8 9-24 -3	1973 + 5 + 7 9-15 0	+ 2 + 3 5 9-8 + 1 - 7 +13	**************************************	+3 +2 9-7 +1	e date *1 +3 9-24 +2 -1	+ 3 + 6 9-12 + 2 - 2 +19	+ 6 + 6 ? 9-2 + 4 + 1 +22

		Ill	inois			Minnes	sota
Ur-	Gi-	Edge-	Belle-	-Eldo-	-Carbon-	Lamb-	Wa-
bana	_	_	ville			erton	seca
			071 V	ICI D	(b/2)		
		=	9/1 Y.		(bu/a)		
52.0	46.7		50.1		43.1	31.3	38.6
54.2	45.1	43.5	50.6		54.0	31.2	39.1
56.7	55.5	42.3	47.4	48.9	39.8	41.9	37.1
51.8	48.7	46.8	45.3	45.2	40.2	35 . 4	42.1
4.2	3.6	5.7	3.4	1.5	9.9	9.7	6.6
4.5	3.5	5.0	3.3	1.4	7.9	6.0	4.6
30	30	38	38	37	30	30	30
4	4	4	4	4	4	4	4
	3	3	3	3	3	3	3
3							
			YIE	LD RAI	<u>NK</u>		
3	3	2	2	2	2	3	3
2	4	3	1	1	1	4	2
1	1	4	3	3	4	1	4
4	2	1	4	4	3	2	1
		10	69-71	MFAN	YIELD		
		_					5.31.2
48.6		46.0	48°0	51.3	38.7	38.7	40.1
50.1			46.9		41.3	38.4	41.4
51.1		39.9	47.4		36 。 5	46.3	40.9
49.7	48.8	44,9	46.2	51.3	36.8	40.3	43.5
			YIE	LD RA	NK		
4	3	2	1	2	2	3	4
2	4	1	3	1	1	4	2
1	ì	4	2	4	4	ì	3
3	2	3	4	2	3	2	1
					<u> </u>		
	19'	71 MAT	URITY	(rela	ative da	te)	
+ 4	+1	+ 2	+3	+ 2	+ 2		+6
+ 6	+2	+ 4	+6	+ 4	+10		+8
9-6	9-2	9-5	8-29	8-28			9-16
+ 4	-3	+ 2	+3	- 2	+ 1		+5
0	0	_	4.	_			
0	-8	- 3	-4	- 3			+1
+20	+9	+13	+9	+11	+14		
5-15	5-16	6-2	5-14	5_10	5-18	5-13	5-14
114	109	95	107		99	2-13	125
	1 03	33	107	TOT	ככ		123

opiek col her brook center con head low			Iot	wa				Missou	ri		Dakota	Nebra		Kansas
#7.5 39.4 41.5 58.9 60.3 43.8 42.1 48.9 47.5 27.9 27.1 38.4 45.5 33.5 43.3 41.9 41.2 60.1 53.4 46.9 37.3 50.5 54.9 27.6 24.7 39.1 45.5 27.3 54.4 43.9 43.8 61.1 54.1 51.4 43.3 46.5 44.2 32.0 28.0 40.2 55.6 34.7 49.1 46.9 39.8 61.9 52.0 48.6 42.9 44.2 46.5 28.3 24.7 41.1 51.9 28.5 49.1 49.1 46.9 39.8 61.9 52.0 48.6 42.9 44.2 46.5 28.3 24.7 41.1 51.9 28.5 49.3 3.3 3.4 3.0 4.4 5.2 4.8 n.s. 6.8 4.7 3.9 n.s. n.s. 3.8 4.1 51.9 28.5 49.4 4.2 46.5 28.3 24.7 41.1 51.9 28.5 49.4 4.2 40.5 28.0 40.2 55.6 34.7 49.1 49.1 49.1 49.1 49.1 49.1 49.1 49.1	Suth-			_	Clar-							Con-	Mead	Pow-
#7.5	erland	awha	erly	Sloan	ence	Ames	ard	umbia	Vernon	ings	ville	cord	I	hattan
#7.5							1971	/IELD	(bu/a)					
#3.3	117 5	30 11	117 5	E 0 0	60.0					*	*			
54.4 43.9 43.8 61.1 54.1 51.4 43.3 46.5 24.2 22.0 28.0 40.2 55.6 34.7 49.1 46.9 39.8 61.9 52.0 48.6 42.9 44.2 28.3 24.7 41.1 51.9 28.5 4.9 5.9 5.5 5.5 7.2 7.2 7.2 8.6 9.0 6.3 8.6 12.0 4.5 3.9 8.3 27 27 27 27 27 27 15 15 15 30														
#9.1 #6.9 39.8 61.9 52.0 #8.6 #2.9 #4.2 #6.5 28.3 24.7 #41.1 51.9 28.5 #.9 5.9 5.5 5.5 7.2 7.2 8.6 9.0 6.3 8.6 12.0 #.5 3.9 8.3 3.3 3.4 3.0 #.4 5.2 4.8 n.s. 6.8 4.7 3.9 n.s. n.s. 3.8 4.1 27 27 27 27 27 15 15 15 15 30 30 30 30 30 30 4 4 4 5 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4														
4.9														
3.3 3.4 3.0 4.4 5.2 4.8 n.s. 6.8 4.7 3.9 n.s. n.s. 3.8 4.1 27 27 27 27 27 27 27 15 15 15 15 30 30 30 30 30 30 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4		70.3	33.0	01.9	32.0	48.6	42.9	44.2	46.5	28.3	24.7	41.1	51.9	28.5
3.3 3.4 3.0 4.4 5.2 4.8 n.s. 6.8 4.7 3.9 n.s. n.s. 3.8 4.1 27 27 27 27 27 27 15 15 15 30 30 30 30 30 30 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	4.9	5.9	5.5	5.5	7.2	7.2	8.6	9.0	6.3	8.6	12.0	4.5	3.9	8.3
27 27 27 27 27 27 27 27 27 15 15 15 15 30 30 30 30 30 30 30 4 4 4 4 4 4 4 4 4	3.3	3.4	3.0	4.4	5.2	4.8								
# # # # # # # # # # # # # # # # # # #	27	27	27	27	27	27								
YIELD RANK	4	4	4	4	4									
3	4	4	2	4	4	4	4	4	4		4	3	3	4
3							YII	ELD RAI	NK					
### ### ### ### ### ### ### ### ### ##	2	1.	^	1.						*_	*			_
1 2 1 2 1 2 2 1 1 2 2 1 1 3 4 1 1 3 2 1 1 1 2 3 3 3 2 3 1 2 3 3 3 1 2 3 3 3 4 4 5 3 4 5 3 4 5 3 4 5 3 4 5 3 5 5 5 5														
2 1 4 1 4 2 2 4 3 2 3 1 2 3 70-71 70-71 42.7 40.8 40.0 48.9 55.4 44.9 40.5 39.5 41.9 29.7 31.2 37.8 44.5 39.6 40.4 40.4 38.8 51.2 55.7 46.8 38.9 39.7 46.1 29.2 30.9 37.2 43.2 37.0 45.7 44.4 41.0 52.8 50.4 47.6 37.0 36.4 38.2 34.2 34.2 36.7 47.9 32.9 42.6 45.2 40.3 51.1 49.5 45.9 38.0 39.1 37.5 32.0 31.4 37.6 46.0 33.5 \[\begin{array}{c c c c c c c c c c c c c c c c c c c														
70-71 70-71														
70-71 70-71 70-71 70-71 70-71 70-71 70-71 70-71 70-71 42.7 40.8 40.0 48.9 55.4 44.9 40.5 39.5 41.9 29.7 31.2 37.8 44.5 39.6 40.4 40.4 38.8 51.2 55.7 46.8 38.9 39.7 46.1 29.2 30.9 37.2 43.2 37.0 45.7 44.4 41.0 52.8 50.4 47.6 37.0 36.4 38.2 34.2 34.2 36.7 47.9 32.9 42.6 45.2 40.3 51.1 49.5 45.9 38.0 39.1 37.5 32.0 31.4 37.6 46.0 33.5					4	2	2	4	3	2	3	1	2	3
70-71 70-71 70-71 70-71 70-71 70-71 70-71 70-71 70-71 42.7 40.8 40.0 48.9 55.4 44.9 40.5 39.5 41.9 29.7 31.2 37.8 44.5 39.6 40.4 40.4 38.8 51.2 55.7 46.8 38.9 39.7 46.1 29.2 30.9 37.2 43.2 37.0 45.7 44.4 41.0 52.8 50.4 47.6 37.0 36.4 38.2 34.2 34.2 36.7 47.9 32.9 42.6 45.2 40.3 51.1 49.5 45.9 38.0 39.1 37.5 32.0 31.4 37.6 46.0 33.5														
42.7							1969-71		YIELD					
40.4		7	70-71	70-71				70-71	69,71		70-71		70-73	l
45.7	42.7	40.8	40.0	48.9	55.4	44.9	40.5	39.5	41.9	29.7	31.2	37.8	44.5	39.6
42.6 45.2 45.9 38.0 39.1 37.5 32.0 31.4 37.6 46.0 33.5 YIELD RANK 2 3 3 4 2 4 1 2 2 3 3 1 3 1 4 4 4 2 1 2 2 1 1 4 4 3 4 2 1 2 1 3 1 4 4 3 1 1 4 1 4 2 1 2 3 4 3 3 3 1 4 4 3 4 2 2 2 2 2 3 3 4 2 2 2 2 2 2 3 3 4 2 2 2 2 3 3 4 2 2 2 2 3 4 3 4 2 2 2 2 3	40.4	40.4	38.8	51.2	55.7	46.8	38.9	39.7	46.1	29.2	30.9	37.2	43.2	37.0
YIELD RANK 2	45.7	44.4	41.0	52.8	50.4	47.6	37.0	36.4	38.2	34.2	34.2	36.7	47.9	32.9
2 3 3 4 2 4 1 2 2 3 3 3 1 3 1 3 1 4 4 4 4 2 1 2 2 2 1 1 1 4 4 4 3 4 2 1 2 2 1 1 1 4 4 4 4 3 4 2 1 4 4 1 4 3 1 1 1 4 1 4 1 4 1 4 1 4 1 4	42.6	45.2	40.3	51.1	49.5	45.9	38.0	39.1	37.5	32.0	31.4	37.6	46.0	33.5
4 4 4 2 1 2 2 1 1 4 4 3 4 2 1 2 1 1 3 1 1 4 1 4 1 4 4 1							YII	ELD RA	NK					
4 4 4 2 1 2 2 1 1 4 4 3 4 2 1 2 1 1 3 1 1 4 1 4 1 4 4 1	2	3	3	ш	2	ш	1	2	2	3	3	1	3	1
1 2 1 1 3 1 4 4 4 3 1 1 1 4 1 4 1 3 1 1 4 1 4														
1971 MATURITY (relative date) +4														
+4 0 +2 +2 +5 +9 0 0 +6 +7 +2 +3 +4 +13 +2 0 9-18 9-16 9-5 10-2 9-19 9-14 9-17 9-3 0 +3 0 +1 +4 +6 0 0 -1 +3 +1 -3 -2 +9 +8 +11 +8 5-13 5-21 5-29 5-13 5-12 5-27 5-13 5-19 5-11 5-26 5-19 5-21 5-26 5-17		1												
+4 0 +2 +2 +5 +9 0 0 +6 +7 +2 +3 +4 +13 +2 0 9-18 9-16 9-5 10-2 9-19 9-14 9-17 9-3 0 +3 0 +1 +4 +6 0 0 -1 +3 +1 -3 -2 +9 +8 +11 +8 5-13 5-21 5-29 5-13 5-12 5-27 5-13 5-19 5-11 5-26 5-19 5-21 5-26 5-17														
+4 0 +2 +2 +5 +9 0 0 +6 +7 +2 +3 +4 +13 +2 0 9-18 9-16 9-5 10-2 9-19 9-14 9-17 9-3 0 +3 0 +1 +4 +6 0 0 -1 +3 +1 -3 -2 +9 +8 +11 +8 5-13 5-21 5-29 5-13 5-12 5-27 5-13 5-19 5-11 5-26 5-19 5-21 5-26 5-17						1971 1	MATHET	TY (re	lative (date)				
+6 9-18 0 9-16 9-16 10-2 9-19 9-14 9-17 9-3 0 +3 10-2 9-19 9-14 9-17 9-3 0 0 +3 0 +1 +4 +6 0 0 0					•				14110	*	*			•
9-18 9-16 9-5 10-2 9-19 9-14 9-17 9-3 0 +1 +4 +6 0 0 0 +3 +13 -2 +9 +8 +11 +8 5-13 5-21 5-29 5-13 5-12 5-27 5-13 5-19 5-11 5-26 5-19 5-21 5-26 5-17												-	_	
+3 0 +1 +4 +6 0 0 -1 +3 +1 -3 -2 +9 +8 +11 +8 5-13 5-21 5-29 5-13 5-12 5-26 5-17 5-26 5-19 5-21 5-26 5-17														
+3 +13 -2 +9 +8 +11 +8 5-13 5-21 5-29 5-13 5-12 5-27 5-13 5-19 5-11 5-26 5-19 5-21 5-26 5-17														
5-13 5-21 5-29 5-13 5-12 5-27 5-13 5-19 5-11 5-26 5-19 5-21 5-26 5-17		0				+3		U		+1	+4	+ 6	U	U
5-13 5-21 5-29 5-13 5-12 5-27 5-13 5-19 5-11 5-26 5-19 5-21 5-26 5-17	<u></u>			~-				-1		+3	+1		- 3	-2
J-10 J-21 J-23 J-10 J 12 J-10 J-10 J-10 J-10 J-10 J-10 J-10 J-10														_
J-10 J-21 J-23 J-10 J 12 J-10 J-10 J-10 J-10 J-10 J-10 J-10 J-10														
120 112 109 129 123 116 114 109	5-13			5-13	5-12									
		120				112		109		129	123	TTP	114	109

		N.Y.	Penn.	N.J.	Onta	rio		Ohio			chigan
Strain	Mean	Aur-	Univ.	Middle-	Ridge-		Hoyt-	Woos-	Col-	_	Peters-
		ora	Park	bush	town	row	ville	ter	umbus	inaw	burg
	28 Tests			LODG	ING (sc	ore)					
Amsoy 71	2.1		3 . 5	2.0	3.1	i	1 *	1 *	ı*	1	3 *
Beeson	1.9		2.0	1.6	3.4	i	1	1	ī	ī	3
Corsoy	2.4		2.8	2.0	3.0	1	ı	ī	2	ī	3
C1470	1.4		1.2	1.0	1.4	1	1	ī	ī	ī	2
	28 Tests			HEIG	HT (inc	hes)					
			*	*			*	25	*	0.7	33 *
Amsoy 71	41		40	24*	3 9	26	41"		36	37	
Beeson	39		38	26	37	29	37	24	35	36	36
Corsoy	38		39	21	38	26	36	24	37	36	36
C1470	37		35	22	34	26	38	22	35	34	35
	26 Tests			SEED QU	ALITY (score)					
Amsoy 71	1.8		2 . 8	2.4	3	3. 3	2 . 3	2 . 0	3 . 2		
Beeson	2.0		1.5	1.8	3	2.0	1.6	1.0	3.2		
Corsoy	1.7		2.2	2.4	3	2.0	1.6	1:0	3.0		
C1470	1.9		2.8	1.9	2	2.0	1.8	1.3	2.0		
	21 Tests			SFED	SIZE (g	/100)					
			20 . 7	*		17.4	16 . 2	* .	*		*
Amsoy 71	16.6			22.0	21.7			17.0	20.9	18	18
Beeson	18.7		21.7	25.0	23.2	19.1	18.6	17.9	25.8	20	20
Corsoy	15.4		18.3	19.0	19.2	14.6	16.4	16.4	19.0	16	15
C1470	16.0		17.4	19.0	18.7	15.3	17.3	15.1	18.9	17	16
	16 Tests				OTEIN (%)					
Amsoy 71	39.8			38 . 4		40.7			36.6		38.5
Beeson	40.4			39.6		42.7			40.2		40.3
Corsoy	40.1			38.3		41.9			38.6		41.2
C1470	40.9			39.7		42.5			40.1		40.1
	16 Tests				OIL (%)						
Amsoy 71	22.6			22. 6		22.0			24.6		22.8
Beeson	21.5			20.5		20.6			21.2		22.0
Corsoy	22.3			21.6		21.0			22.9		
C1470						21.5			22.5		21.8
C1470	22.2			20.9		21.3			22.3		22.4

^{*} Not included in the mean

	22.55	Indian			Wis.	Illin	
v				Worth-			Pon-
Knox	ton	ette	rield	ington	ison	Kalb	tiac
		LO	DGING	(score			
3.0	3.0	3.4	1.8	2.4	1.1	1.3	1.8
2.3	2.9	2.6	1.0	2.0	1.4	1.2	1.7
2.3	3.1	4.0	1.0	3.6	1.5	1.2	
1.3	2.0	2.1	1.0	1.5	1.1	1.0	1.3
		HE	IGHT	(inches)		
43	41	46	41	43	- 35	41	40
41	36	43	38	39	35	39	39
38	39	43	31	43	33	39	42
38	35	46	34	39	33	38	40
		SEED	QUALI'	TY (sco	re)		
	•				2	1 7	1 5
2.0	2	2.0	2.0	2.0		1.7	
1.5	2	1.5	1.5	2.0	2	2.0	2.0
1.5	2	1.5	1.5	1.5	2	1.8	1.3
1.5	2	2.0	2.0	1.5	2	2.0	1.4
		SEE	D SIZ	E (g/10	0)		
18.0	19.4	16.5	18.2	16.1		17.3	14.4
20.7	22.1	18.5	20.3	18.6			16.5
15.0	17.3	14.8	16.0	13.8			13.2
16.2	17.0	15.8	16.9	15.4			14.2
			PROTE	IN (%)			
40.5		43.6			40.9	38.8	
41.9		39.3				39.3	
40.7		40.1				39.7	
41.1		42.7			42.1		
			OIL	(%)			
••		00.1			22 1	23.8	
22.1		22.4					
21.2		21.5				22.7	
21.5		22.1				23.4	
22.1		21.9			21.3	24.0	

Ī

			linois			Minnes	
Ur-	Gi-				-Carbon-		
bana	rard	wood	ville	rado	dale	erton	seca
			LODGI	NG (s	core)		
1.6	2.6	3.1	1.1	2.7	1	2.3	1.3
		2.7		1.5	1	1.7	1.3
		3.3		3.1		3.7	1.7
1.3	1.1	1.3	1.0	1.0		1.7	1.0
			HEIGH	T (in	ches)		
43	46	44	41	39	26	38	38
40	43	41	37	35	26	40	38
37	44	40	33	36	23	39	35
39	42	39	34	34	23	39	37
		SEI	ED QUA	LITY	(score)		
2.0	2.5	2.3	1.7	2.7	2	2.3	1.7
2.5			1.9	3.0	2	3.0	2.7
		2.0		2.5	2	2.0	1.7
2.7	2.2	2.2	1.9	2.9	1	3.0	2.7
		9	SEED S	IZE (g/100)		
					18.1	15.1	15.7
17.6	16.3	16.1	19.4	19.7		17.4	17.5
			13.9			16.2	
14.9	14.3	14.7	15.2	15.5	17.1	16.0	16.5
			PRO	TEIN	(%)		
40.0				40.0		38.8	
40.8	41.4			41.1		39.1	
39.6				40.6		40.4	
40.2	42.7			40.2		41.0	
			0	IL (%)		
22.7				23.7		20.5	
21.5	20.8			22.9		21.0	
22.4	22.2			22.9		20.9	
21.9	21.2			23.7		20.9	

		Iov	<i>v</i> a			-	Missou	ri	South	Dakota	Nebra	aska	Kansas
Suth-		Wav-		Clar-			-Col-			Center-	Con-	Mead	Pow-
erland	awha	erly	Sloan	ence	Ames	ard	umbia	Vernon	ings	ville	cord	I	hattan
						LODG	ING (s	core)					
1.9	2.0	1.5	2.2	3.4		2.2	2.5	2.6	1*		1	1.4	1
1.9	1.6	1.5	1.8	2.9		2.3	2.6	2 . 5	1		1	1.7	1
2.3	2.9	1.8	2.8	2.9		2 , 8	3.0	3.0	1		2	2.1	1
1.6	1.3	1.2	1.4	1.9		1.6	1.9	2 . 7	1		1	1.1	1
						HEIG	HT (in	ches)					
48	44	44	45	48		40	39	34	33 *	33*	37	47	31
46	40	43	40	45		36	36	32	33	29	36	47	29
42	42	42	40	44		38	34	28	36	32	36	45	29
44	40	43	41	44		38	33	29	32	31	34	46	28
					<u>S1</u>	EED QU	ALITY	(score)					
_				4.121	- 2				*	*		-5-5	
1	1	1	1	1	1.3		2.3	3.0	2.2	1.5		1.3	1.7
1	1	1	1	1	1.0		2.5	2.8	2.0	2.2		1.1	2.0
1	ì	1	1	1	1.0 1.6		2.3	2.5	1.8 2.0	1.5 2.0		1.2 1.6	2.2 3.0
					1.0				2:0	2.0		1,0	
						SEED	SIZE (g/100)					
	16.8				18.0				17:2	13.9		16.7	12.1
	16.8				20.0				17.1	16.1		17.8	14.2
	16.2				16 .1				16.3	13.9		17.7	11.9
	16.5				18.4				16.7	14.2		17.2	12 . 2
		_				PR	OTEIN	(%)					
	40.2				38.8		39.0			39 . 9		38.4	39.5
	39.4				39.4		40.4			39.6		40.0	40.1
	40.9				38.9		38.9			39.5		39.1	37.6
	42.8				40.5		38.6			40.4		39.1	39.6
							OIL (%)					
	21.8				22.0		22.9			22 . 4		22.3	23.4
	20.5				21.8		21.7			21.7		21:2	22.4
	21.5				22.3		23,2			22 - 2		22.8	23.9
	20.5				22.5		22.7			22.4		22 - 9	22.9

Strain	Parentage	Generation Composited	Previous Testing
1. Amsoy 71 2. Corsoy			
3. Magna	(F ₆ Ottawa Mandarin x Jogun) x (F ₆ Ott. Mand. x Kanro)	F ₆	65 - 66 II
4. Provar	Harosoy x Clark	F8	64 - 67 II
5. A66-1441-2	Provar x F_1 (Harosoy 63 x PI 248.406)	F 5	PΙ
6. A66-1746-8	$AX56P64-1(\bar{A}msoy) \times FC 31.122$	F ₆	P II
7. A66-1746-9	II .	F 6	PII
8. A66-1906-1	Provar x F_1 (AX50F58-2 x FC 31.122)	F ₅	PII
9. A66-1906-3	II .	F ₅	
10. AX58-1	Harosoy x Clark	F ₁₁	
11. AX227-31	Hawkeye 63 x FC 31.122	F ₅	
12. AX268-2	Provar x F_1 (Hawkeye 63 x FC 31.122)	F ₄	
13. AX268-70	11	F4	
14. AX270-32	Provar x F ₁ (Hawkeye 63 x PI 91.110-1)	F4	
15. AX271-44	Provar x F ₁ (Hawkeye 63 x PI 248.406)	F4	
16. Blend 2	25% Amsoy 71 + 75% Corsoy	-4	
17. H130-865	Harosoy 63 x C1243(PI 68.521 x Wabash)	F ₅	
18. H142-2895	$L4(C1128-Rps rxp) \times AX56P64-1(Amsoy)$	F 5	
19. L67D-805	Hark x Disoy	F ₃	PΙ
20. L67D-942	II .	F_3	PΙ
21. L67D-944	11	F ₃	PΙ
22. L67D-950	u	F ₃	PII
23. L67D-1220	II .	F3	PII
24. L67U-440	Chippewa 64 x Corsoy	F ₃	PII
25. L67U-1111	Hark x Disoy	\mathbf{F}_3	PII
26. L67U-1546	Provar x Magna	F ₃	P II
27. L67U-1842	Provar x Disoy	F3	P II

This test was grown at twelve locations in 1971 and the regional means includes ten of them. 14 of the 23 experimental strain entries were re-entries from last years Preliminary I and II. The objectives for most of these as well as some of the new entries were high protein (cf. Provar), or large seed size (cf. Magna), or a combination of both. Many entries have slightly more protein than Amsoy 71 or Corsoy but only five, A66-1906-1 and -3, AX227-31, AX268-70, and AX271-44, were as high as Provar. These five all yielded less than Provar, 1 to 3 bushels on the average and were 3 to 5 days later.

None of the entries had seed as large as Magna but many had distinctly larger seeds than those of the grain varieties Amsoy 71 and Corsoy and yielded much better than Magna. Among these the better yielding ones (averaging 5 bushels or more above Magna) were A66-1746-9, AX227-31 (also high protein), L67D-942,950,1220, and L67U-1111.

The only entries competitive with Amsoy 71 and Corsoy in yield were A66-1441-2 and L67U-440. A66-1441-2 had only slightly larger seeds and slightly more protein than Amsoy 71 and Corsoy. L67U-440 had distinctly smaller seeds and a normal protein content. The latter strain is fairly late, 5 days later than Amsoy 71, and probably should be considered in early Group III along with several other entries in the test.

"Blend 2" (Blend 1, a mixture of Shelby and a Ford sib, was a Uniform Test entry in 1956) is a mixture of Amsoy 71 and Corsoy and topped the test in yield, appreciably above either component. It was hoped that it would at least equal the performance of the better component at each location and thus outperform them in the regional mean. It tended to do this, in general, but a big (and unexplained) superiority in yield over both components at Lafayette and Mead helped offset major reversals of this at Columbia and Centerville. It is also interesting to note that it averaged not quite as late as the late component but lodged slightly more than either.

Regional Summary

			Matu-	Lodg-		Seed	Seed	Seed Compo	sition
	Yield	Rank	rity	ing	Height	Quality	Size	Protein	0i1
No. of Tests	10	10	10	9	10	10	8	6	6
Amsoy 71	43.8	4	+ 3.3	2.2	40	1.8	16.4	39.6	22.9
Corsoy	43.8	4	9-13	2.4	39	1.5	15.2	40.4	22.0
Magna	36.4	27	- 0.1	1.5	34	2.2	25.9	40.6	21.4
Provar	42.4	8	+ 1.1	2.3	35	1.5	21.3	44.3	20.8
A 66-1441-2	44.5	3	+ 2.5	2.1	38	1.6	19.5	42.9	22.0
A66-1746-8	41.2	14	+ 5.6	2.2	38	2.0	22.4	42.4	21.5
A 66-1746-9	43.2	6	+ 5.3	2.0	39	1.9	22.1	42.3	21.7
A66-1906-1	40.4	19	+ 4.6	2.2	3 5	1.8	22.0	45.0	19.8
A66-1906-3	39.4	23	+ 4.1	2.0	34	1.7	21.6	44.0	19.2
AX58-1	41.5	12	+ 4.8	2.3	3 5	1.6	18.4	41.8	21.7
AX227-31	41.4	13	+ 4.7	2.7	39	1.7	21.1	44.9	20.0
AX268-2	40.0	20	+ 4.4	2.7	37	1.6	21.0	43.1	20.4
AX268-70	39.4	23	+ 6.3	2.6	37	1.7	18.3	44.3	20.3
AX270-32	37.6	26	+ 8.0	3.2	41	1.6	17.6	43.5	20.2
AX271-44	39.7	22	+ 6.5	2.9	41	1.7	19.8	44.3	20.2
Blend 2	46.2	1	+ 2.7	2.6	40	1.7	15.5	40.3	22.0
H130-865	38.4	25	+ 8.2	2.6	40	1.6	15.6	40.5	21.4
H142-2895	41.2	14	+ 7.3	2.1	41	1.8	15.9	40.2	21.5
L67D-805	40.8	16	+ 2.1	2.0	3 5	1.7	21.1	42.8	20.7
L67D-942	42.2	10	+ 2.2	2.0	37	1.8	22.1	41.4	21.6
L67D-944	39.8	21	+ 4.7	2.5	40	1.8	22.2	43.0	21.1
L67D-950	42.4	8	+ 7.3	1.7	38	1.9	21.4	41.7	21.3
L67D-1220	42.9	7	+ 8.5	1.8	39	2.2	21.6	41.9	21.4
L67U-440	46.1	2	+ 8.1	3.0	41	1.7	13.5	39.4	21.8
L67U-1111	41.7	11	+ 8.8	3.2	43	1.8	22.2	42.2	21.4
L67U-1546	40.7	17	+11.5	2.3	41	2.1	23.3	42.9	20.2
L67U-1842	40.6	18	+ 9.9	1.6	37	2.2	24.6	43.1	20.6

77. 15

Disease Data

		ВВ		В	P	BS	BS	R	FE2		PR	
	Urb	-	Ames	Ur		Laf.	Laf.	Urb.	Laf.	Laf.	Ames	Ston'.
Strain	I 11	. :	Iowa	11	1.	Ind.	Ind.	I11.	Ind.	Ind.	Iowa	Miss.
	n1	n2	n	a2	a1	n	n	n	а	а	а	n
							%	%				
Amsoy 71	2 3	. 0	2	s	3	2	19	50	4	R	R	1
Corsoy	2 3	.0	2	S	3	3	5	40	5	S	S	5
Magna	1 3	.0	2	S	3	4	40	10	1	S	S	3
Provar	4 3	• 5	3	S	3	3	25	20	4	S	S	2
A 66-1441-2	1 3	. 5	2	S	1	2	28	30	5	S	S	1
A 66-1746-8	4 3	. 5	2	S	4	4	54	20	4	S	S	1
A 66-1746-9	4 3	.0	2	S	1	3	67	40	5	S	S	1
A66-1906-1	2 3	. 5	2	S	3	3	33	30	5	S	S	3
A66-1906-3	3 3	. 5	2	S	1	4	11	40	5	S	S	1
AX58-1	4 4	.0	2	S	1	4	19	100	5	S	S	3
AX227-31	4 3	. 5	3	S	3	2	24	60	5	R	R	1
AX268-2	4 3	. 5	2	S	3	3	30	40	5	R	R	3
AX268-70		. 5	2	S	2	5	20	40	4	H	R	1
AX270-32		.0	2	S	3	3	35	60	4	R	R	3
AX271-44		. 5	2	S	3	3	11	40	5	R	R	2
Blend 2	2 3	. 5	2	S	2	4	24	50	5	S	S	4
H130-865	2 3	.0	1	S	2	3	27	10	5	S	S	3
H142-2895	3 3	. 5	2	R	2	3	47	100	5	R	R	1
L67D-805		. 5	2	S	3	2	35	60	1	S	S	3
L67D-942	2 2	. 5	2	S	3	5	16	100	H	S	S	3
L67D-944	2 3	. 5	2	S	3	3	44	50	4	S	S	3
L67D-950	2 3	. 5	1	S	2	3	15	40	4	S	S	3
L67D-1220	1 3	. 0	1	S	2	4	21	60	H	S	S	3
L67U-440	2 2	. 5	2	S	1	5	20	50	5	S	S	2
L67U-1111	2 3	.0	2	S	3	4	35	100	4	s	S	2
L67U-1546	3 2	. 5	2	S	1	5	32	60	H	S	S	1
L67U-1842	4 4	. 0	2	S	2	4	43	40	4	S	S	3

PRELIMINARY TEST II, 1971

Descriptive and Shattering Data

			Shattering					
Strain	Descript: Code	lve		as attan 4 wk.	Mississippi Stoneville			
Amsoy 71	PGNTn	SYY	3	5	2			
Corsoy	PGNBr	DYY	1	3	3.5			
Magna	PGNBr	DYY	5	5	5			
Provar	PTNBr	IYBr	1	3	2			
A 66-1441-2	PGNBr	DYBf	2	3	5			
A 66-1746-8	PGNBr	SYY	3	5	4			
A 66-1746-9	PGNBr	SYY	4	5	3			
A 66-1906-1	PGNBr	DYBf	1	2	3			
A66-1906-3	PTNBr	SYBr	2	3	4			
AX58-1	PGNBr	DYBF	1	1	2			
AX227-31	PGNBr	SYG	4	5	5			
AX268-2	PGNBr	DYIb	1	4	4			
A X268-70	PTNBr	IYB1+G	1	3	4			
AX270-32	PGNTn	DYBF	1	3	2			
AX 271-44	PGNBr	DYBF	1	5	3			
Blend 2	PGNBr+Tn	D+SYY	3	5	4			
H130-865	PGNBr	SYY	4	5	5			
H142-2895	P(W)GNTn	SYY(Bf)	1	5	5			
L67D-805	PGNTn	DYY	4	5	5			
L67D-942	PGNTn	DYY	5	5	5			
L67D-944	PGNTn+Br	DYY	5	5	5			
L67D-950	PGNTn	DYY	5	5	5			
L67D-1220	PGNTn	DYY	4	5	5			
L67U-440	PTNBr	DYY	1	3	3			
L67U-1111	PGNBr	DYY	3	5	5			
L67U-1546	PGNBr	DYBf	2	5	4			
L67U-1842	PGNBr	DYBf	3	5	3			

	<u>O</u> 1	ntario		Inc	liana					owa_		S. Dak.	
Strain	Mean	Har-	Hoyt-		Lafay-	Mad-	Pon-	Ur-	Kan-		_	Center-	
		row	ville	Knox	ette	ison	tiac	bana	awha	Ames	umbia	VIIIe	I
1	0 Tes	ts			1971	YIELD	(bu/a	<u>a)</u>					
			*			*					- 400		
Amsoy 71	43.8	40.0	32.2	48.2	46.5		30.2					28.2	47.5
Corsoy	43.8	34.6	34.3	35.6	44.6		35.8				48.0	31.6	51.2
Magna	36.4	29.4	21.5	34.7	46.2		34.5				29.5	17.5	47.4
Provar	42.4	36.9	29.7	44.2	49.2	28.3	35.4	54.9	37.8	52.6	38.5	25.1	49.1
A66-1441-2	44.5	40.9	29.4	46.5	51.0	30.0	35.0	52.9	41.9	51.2	51.5	25.9	48.6
A 66-1746-8	41.2	44.3	33.6	41.1	45.0		36.3				49.3	24.9	43.0
A 66-1746-9	43.2	39.1	32.4	43.2	44.9		33.1				49.1	30.3	51.3
A66-1906-1	40.4	38.0	34.9	33.1	46.1	26.1	34.8	52.9	39.2	43.9	42.4	24.7	48.5
A66-1906-3	39.4	39.2	29.0	37.4	44.5	23.0	32.5	45.8	37.1	46.7	37.9	26.7	45.9
AX58-1		35.2	35.7	45.9	50.5	32.6	34.3	50.0	38.4	46.4	42.6	26.2	45.2
AX227-31	41.4	38.2	28.4	42.7	50.5	32.1	35.9	52.4	40.8	42.7	44.4	23.0	43.1
AX268-2		37.1	29.0	29.1	50.2	31.5	34.6	48.1	40.2	44.2	44.8	24.3	46.9
AX268-70	39.4	33.1	27.8	40.7	48.3	35.6	34.6	48.4	35.0	43.0	42.9	20.9	47.2
AX270-32		35.9	27.5	38.2	42.5		34.3				42.3	20.0	38.7
AX271-44		37.4	30.7	38.4	47.0		25.9				48.3	22.8	46.8
Blend 2		41.8	31.5	42.5	54.6	34.6	37.3	59.3	47.7	52.0	40.8	25.0	60.8
н130-865	38.4	34.4	29.2	36.3	46.1	30.8	29.9	48.3	34.2	39.6	42.9	26.1	46.0
H142-2895	41.2		31.0	44.9	48.2		29.4				45.6	25.3	47.7
L67D-805		35.8	29.9	42.5	53.1		31.1				39.3	20.6	46.4
L67D-942	42.2		36.1	39.2	48.6	24.2	31.0	54.4	41.2	51.7	45.4	22.0	48.6
L67D-944	39.8	35.2	24.8	41.6	52.0	26.9	29.4	49.4	37.8	48.9	40.3	18.2	45.6
L67D-950	42.4		28.3	40.7	53.7		31.8					27.8	50.2
L67D-1220		36.0	25.6	50.5	56.6		29.4						45.3
L67U-440		41.2	35.1	49.7	55.6		38.9					25.9	51.2
L67U-1111	41.7	36.0	27.1	55.4	46.3	28.8	33.5	53.7	42.3	38.1	43.7	23.4	44.9
L67U-1546	40.7		28.6	41.9	56.3		28.6					26.4	44.1
L67U-1842		38.7	37.4	49.2	46.5		31.2					21.7	44.9
C.V. (%)		12.8		12.5	7.9	13.4	10.1	8.0	6.5	10.9	10.0	13.4	9.9
L.S.D. (5%)		n.s.		10.8	8.0	10.1	7.2	8.6		10.0		6.7	8.2
Row Sp. (in	.)	24	32	38	38	36	38	30	27	27	15	30	30
Rows/Plot	-,	4	3	3	3	1	3	3	4	4	4	3	4
Reps		2	2	2	2	2	2	2	2	2	2	2	2
F-				_	_					_		_	

		ntario	Ohio	_Ind	iana	Wis.	111:	inois	Iov	va	Mo.	S. Dak.	Neb.
Strain	Mean	Har-	Hoyt-		Lafay-	Mad-	Pon-		Kan-		Col-	Center-	
		row	ville	Knox	ette	ison	tiac	bana	awha	Ames	umbia	ville	I
	10 Tes	sts			YIE	LD RA	1K						
			*			*							
Amsoy 71	4	5	9	5	17	11	21	2	9	11	2	3	11
Corsoy	4	23	6	24	25	11	5	4	2	2	6	1	3
Magna	27	27	27	25	20	26	11	27	11	24	27	27	12
Provar	8	15	14	9	12	15	6	7	21	1	25	12	6
A66-1441-2	3	4	15	6	8	9	7	10	6	6	1	9	7
A66-1746-8	14	1	7	16	23	18	3	24	16	22	2	14	26
A66-1746-9	6	8	8	10	24	22	15	17	4	13	4	2	2
A 66-1906-1	19	11	5	26	21	21	8	10	18	15	17	15	9
A66-1906-3	23	7	17	22	26	25	16	26	23	10	26	5	18
AX58-1	12	21	3	7	9	4	12	18	20	12	16	7	21
AX227-31	13	10	20	11	9	5	4	14	12	20	12	18	25
AX268-2	20	14	17	27	11	6	9	23	13	14	11	16	14
AX 268-70	23	25	22	17	14	2	9	21	25	16	14	22	13
AX270-32	26	18	23	21	27	9	12	19	26	23	18	24	27
AX 271-44	22	12	12	20	16	19	27	25	13	18	5	19	15
Blend 2	1	2	10	12	4	3	2	3	1	3	20	13	1
H130-865	25	24	16	23	21	8	22	22	26	26	14	8	17
H142-2895	14	26	11	8	15	20	23	5	19	16	9	11	10
L67D-805	16	19	13	12	6	26	19	16	3	18	23	23	16
L67D-942	10	6	2	19	13	24	20	8	10	5	10	20	7
L67D-944	21	21	26	15	7	17	23	20	21	7	21	26	19
L67D-950	8	12	21	17	5	7	17	12	8	8	22	4	5
L67D-1220	7	16	25	2	1	13	23	15	15	4	7	25	20
L67U-440	2	3	4	3	3	1	1	1	7	9	8	9	3
L67U-1111	11	16	24	1	19	14	14	9	5	27	13	17	22
L67U-1546	17	19	19	14	2	22	26	6	24	25	19	6	24
L67U-1842	18	9	1	4	17	16	18	13	16	21	23	21	22

			Ohio	Indi			I11:		Iot	wa	Mo.	S. Dak.	
Strain	Mean		Hoyt-		Lafay-				Kan-		Col-	Center-	Mead
		row	ville	Knox	ette	ison	tiac	bana	awha	Ames	umbia	ville	<u> </u>
	10 Tes	its		маті	JRITY (relat	ive d:	ate)					
			*	1111	JACITI (*	VC U	1007					
Amsoy 71	+ 3.3	+ 3	+ 5	+ 8	+ 4	+ 2	+ 4	+ 5	+ 3	+ 1	+ 1	+ 3	+ 1
Corsoy	9-13	9-14	9-17	9-23	9-6	9-25		9-6		9-17			9-16
Magna	- 0.1	+ 2	0	- 5	- 3	+ 1	+ 1	- 3	0	- 1	+ 2	+ 6	0
Provar	+ 1.1	+ 2	+ 2	+ 9	+ 1	+ 1	+ 2	0	0	- 1	- 2	+ 2	- 2
A66-1441-2	+ 2.5	+ 2	+ 5	+ 9	+ 3	+ 4	+ 4	+ 2	+ 2	+ 1	+ 1	+ 4	
A66-1746-8	+ 5.6	+10	+ 7	+ 9	+ 7	+ 5	+ 9	+ 6	+ 4	+ 3	+ 3	+ 4	- 3
A66-1746-9	+ 5.3	+ 5	+ 8	+11	+ 5	+ 8	+ 9	+ 7	+ 6	+ 3	+ 3		+ 1
A66-1906-1	+ 4.6	+ 8	+ 5	+15	+ 4	+ 8	+ 7	+ 3	+ 4	. 0		+ 4	0
						. 0	. ,		. 4	Ū	+ 1	+ 4	0
A 66-1906-3		+ 6	+ 7	+14	+ 5	+ 2	+ 5	+ 3	+ 3	+ 4	0	+ 3	- 2
AX58-1	+ 4.8	+ 6	+ 8	+10	+ 4	+ 3	+ 7	+ 4	+ 6	+ 3	+ 2	+ 4	+ 2
AX227-31	+ 4.7	+ 4	+ 7	+ 9	+ 5	+ 4	+ 8	+ 6	+ 5	+ 5	+ 3	+ 2	0
AX 268-2	+ 4.4	+ 6	+ 5	+ 5	+ 4	+ 2	+ 7	+ 6	+ 5	+ 5	+ 2	+ 3	+ 1
AX 268-70	+ 6.3	+ 4	+ 3	+14	+ 6	+ 5	+15	+ 5	+ 6	+ 7	+ 2	+ 3	+ 1
AX270-32	+ 8.0	+10	+ 5	+13	+10	+ 4	+12	+ 9	+10	+11	+ 3	- 6	+ 8
A X271-44	+ 6.5	+ 6	+ 6	+12	+ 9	+ 4	+10	+13	+ 8	+ 7	+ 2	- 6	_
Blend 2	+ 2.7	+ 7	+ 4	+ 3	+ 4	+ 2	+ 4	+ 4	0	+ 1	+ 2	+ 2	+ 4
H130-865	+ 8.2	+ 4	+ 6	+12	+ 9	+10	+10	+ 8	+10	410	+ 6		
H142-2895	+ 7.3	+ 8	+ 7	+13	+ 9	+ 8	+10	+ 9	+ 8	+12 + 3	+ 5	+ 8	+ 3
L67D-805	+ 2.1	+ 1	+ 1	+ 3	+ 2	+ 5	+ 4	+ 3	+ 4	_	0	+ 6	+ 2
L67D-942	+ 2.2	+ 1	+ 4	+ 6	+ 4	+ 9	0	+ 2	+ 2	+ 1	0	+ 4	- 1
- (7 D O / /										+ 3	U	+ 3	+ 1
L67D-944	+ 4.7	+ 4	+ 5	+ 7	+ 5	+ 4	+ 5	+ 4	+ 6	+ 7	+ 1	+ 7	+ 1
L67D-950	+ 7.3 + 8.5	+ 4	+ 6	+ 8	+10	+12	+10	+ 9	+ 9	+ 7	+ 5	+ 7	+ 4
L67D-1220		+ 2	+ 5	+15	+11	+11	+11	+ 8	+ 8	+ 9	+ 5	+ 8	+ 8
L67U-440	+ 8.1	+14	+ 8	+11	+12	+ 6	+14	+11	+ 8	+ 9	+ 4	- 6	+ 4
L67U-1111	+ 8.8	+ 4	+ 7	+16	+12	+ 8	+11	+ 5	+10	+ 9	4 -		
L67U-1546	+11.5	+12	+ 6	+15	+13	+ 8	+16	+12	+10	+ 9	+ 5	+10	+ 6
L67U-1842	+ 9.9	+ 9	+ 7	+13	+13	+ 5	+11	+13	+ 9	+10	+ 7 + 5	+12	+ 9
								-	. ,		т 5	+10	+ 6
Hark (I)		+ 2	- 2	- 7	- 5		+ 1	0				4.	^
Wayne (III))	+16			+15		+22	+20				+ 1 + 8	- 2 - 12
Date Plante	ed 5 - 22	6- 1	5 - 19	5-26	5 - 18	5-19	5-18	5 - 15	501				+12
							2 10	2-13	2-21	5-27	5-19	5-19	5-26

Str	rain	Parentage	Generation Composited	Previous Testing*
1. 2. 3. 4.	Calland Wayne SL12 Williams(L66L-108) L66L-172	Cl253(Blackhawk x Harosoy) x Kent L49-4091 x Clark Wayne-Ir Rps x (Wayne x Kanrich) Wayne x L57-0034(Clark x Adams)	F ₇ F ₅ F ₄ lines F ₆ F ₆	4 10 2 1

^{*} Number of years in this test or name of last year's test.

Because of increased testing on the East Coast we are presenting a separate regional mean for this area for the first time this year.

The two check varieties, Calland and Wayne, may be compared in the five-year regional summary. Calland has the slightly higher yield, perhaps a result of its Phytophathora resistance, while Wayne is higher in oil and protein content. The newly released variety Williams is present in the three-year tables. It shows a modest yield advantage over both Calland and Wayne and improved lodging resistance and seed quality. It is of average protein content but higher in oil than either check.

L66L-172 has been in this test two years. It tops the test in mean yield in the central area and is almost as early as Wayne, averaging three days earlier than Williams. It is from the same cross as Williams and similar to it in general plant appearance, lodging resistance, seed quality, and high oil content.

SL12 is a Wayne backcross with the added traits of Phytophthora resistance ($\underline{\text{Rps}}$), downy mildew resistance ($\underline{\text{Rpm}}$ from Kanrich), and yellow hilum ($\underline{\text{I}}$ r). Similar lines with brown (SL11) and black hilum (SL10) are in Preliminary Test III. The strain equalled Wayne on the East Coast and surpassed it in the central area but has a tendency to be slightly later, taller, and more lodging susceptible.

Regional Summary

			Matu-	Lodg-		Seed	Seed	Seed Comp	osition
Strain	Yield	Rank	rity	ing	Height	Quality	Size	Protein	011
					st Coast				
No. of Tests	8	8.	8 -	8	8	8	8	4	4
Calland	~ 46.5	2	+3.0	2.3	35	2.4	20.7	41.6	20.3
Wayne	40.8	3	10-12+	2.6	34	2.6	20.4	43.1	21.0
SL12	40.6	4	+0.8	2.7	36	3.1	19.6	43.6	20.5
Williams	- 46.7	1	+3.3	1.5	34	2.0	19.7	41.8	21.7
L66L-172	~ 39.8	5	-2.5	1.7	32	2.5	16.9	41.6	21.4
					Central		• •	1.0	13
No. of Tests	24	24	20	23	23	22	19	13	13
Calland /35.	45.2	3	+0.7	2.1	42	2.0	16.5	39.5	21.5
Wayne	44.9	5	9-17+	2.2	41	1.9	16.6	41.4	22.1
SL12	46.2	2	+2.1	2.5	44	2.1	17.1	41.6	21.9
Williams /	~ 45.1	4	+3.3	1.7	41	1.6	16.5	40.8	22.6
L66L-172 38 9	~46.3	1	+0.4	1.6	39	1.6	14.5	39.9	22.5
† 122 days a	fter plan	nting							
			1970-71	. 2-yea	ar mean,	Central			
No. of Tests	45	45	39	41	44	41	36	25	25

			1970-71,	2-year	mean,	Central			
No. of Tests	45	45	39	41	44	41	36	25	25
Calland	45.3	3	+2.0	2.3	42	2.4	17.5	39.7	20.8
Wayne	44.1	4	9-21+	2.4	41	2.2	17.2	41.4	21.5
Williams	45.6	2	+3.5	1.8	41	1.9	17.2	40.7	22.1
L66L-172	46.1	1	+0.4	1.8	39	2.0	15.2	39.7	21.9

^{† 122} days after planting

			1969-71,	3-year	r mean,	Central‡			
No. of Tests	75	75	63	66	72	67	62	40	40
Calland	45.7	2	+1.8	2.3	42	2.3	17.4	39.8	21.1
Wayne	45.0	3	9-22+	2.5	41	2.1	17.1	41.5	21.8
Williams	46.4	1	+3.3	1.8	41	1.8	17.4	40.8	22.4

^{† 122} days after planting ‡ Includes three East Coast tests in 1969

No. of Tests	141	141	1967-71, 117	5-year 120	mean,	Central‡ 122	111	68	40
Calland Wayne	44.5 43.7	1 2	+1.5 9-23†	2.2	41 40	2.2	17.4 16.8	39.5 41.1	21.2 21.6

^{† 121} days after planting ‡ Includes six East Coast tests from 1967-69

Disease Data

		BB	3			BP		BS	
Strain	Urba Ill:	ana inois		mes owa	Urba Illi	na nois	Ames Iowa	Lafayette Indiana	Ames Iowa
	nl	n2	n	a	a2	al	n	n	n
Calland	1	4.0	2	3.5	S	3	5	3	4.5
Wayne	2	2.7	2	3	R	1	2	4	2.5
SL12	1	3.0	2	3.5	R	1	3	5	2
Williams	1	1.3	2	3.5	R	1	2	4	3
L66L-172	2	2.3	1	3	R	1	2	3	3.5

		BSR		DM	FE ₂	PM		PR		PSB
Strain	Laf. Ind.	Urb. Ill.	St.P. Minn.	Bel. Ill.	Laf. Ind.	Har. Ont.	Laf. Ind.	Ames Iowa	Stnv. Miss.	Adel. N.J.
	n %	n %	n %	n	a	a	a	a	n	n
Calland	69	90	25	3.0	5	R	R	R	1	2.3
Wayne	45	80	35	4.0	2	R	S	S	1	3.5
SL12	63	50	60	1.0	2	R	R	R	1	3.3
Williams	45	80	55	4.0	5	R	S	S	1	2.0
L66L-172	85	70	10	3.7	5	R	S	S	2	3.3

Descriptive and Shattering Data

						S	hatter	ring			Нуро-
	•	Per-	Fluor-	Kans	as	Miss.		New	Texa	as	cotyl
Strain	Descriptive	oxi-	escent	Manh	attan	Stone	ville	Jersey	Lubl	oock	Length
	Code	dase	Light	2 wk.	4 wk.	clay	loam	Adelphia	10/5	10/13	cm
Calland	PTNBr DYB1	L	L	3	4	4	3	2.3	1.0	2.0	23
Wayne	WTNBr SYB1	L	L	2	3	5	4	3.0	2.5	4.2	23
SL12	WTNBr SYY	L	L	2	5	5	3	3.3	2.2	3.5	22
Williams	WTNTn SYLbl	Н	L	1	3	4	2	2.0	1.2	1.5	22
L66L-172	WTNTn DYB1	L	L	1	2	4	3.5	2.0	2.5	4.5	15

	East		ylvania	N.J.			Marylan			Cen-
Strain			Landis-		-		-	•	•	tral
	Mean	Park	ville	phia	townB	ville	town	townB	ticoB	Mean
	8 Test	s		1971	YIELD	(bu/a)				24 Tests
Calland	46.5	46.2	46.1	39.1	36.3	44.6	57.1	50.0	52.9	45.2
Wayne	40.8	42.4	43.8	30.8	32.0	35.9	51.0	46.9	43.5	44.9
SL12	40.6	44.6	44.6	31.2	31.6	38.9	48.7	41.5	43.4	46.2
Williams	46.7	45.0	46.4	42.6	36.0	41.4	55.4	52.3	54.4	45.1
L66L-172	39.8	41.1	37.9	33.5	29.2	39.4	51.5	44.0	41.8	46.3
C.V.(%)		5.3	7.4	6.8	10.4	12.7	6.8	15.9	10.0	
L.S.D.(5%)		4.4	5.0	4.8	6.1	7.5	5.3	13.3	7.1	
Row Sp.(in.))	30	30	30	15	30	30	15	15	
Rows/Plot		3	3	3	5	3	3	5	5	
Reps		4	4	4	3	4	4	3	4	
				<u>Y</u> :	IELD RA	NK				
Calland	2	1	2	2	1	1	1	2	2	3
Wayne	3	4	4	5	3	5	4	3	3	5
SL12	4	3	3	4	4	4	5	5	4	2
Williams	1	2	1	1	2	2	2	1	1	4
L66L-172	5	5	5	3	5	3	3	4	5	1
	9 Test	S	1969	9-71,	3-YEAR	MEAN Y	IELD			75 Tests
Calland	40.0			39.8	31.6	48.5				45.7
Wayne	35.7			36.1	26.3	44.8				45.0
Williams	40.8			43.9	28.8	49.7				46.4
,				<u>Y</u> :	IELD RA	NK				
Calland	2			2	1	2				2
Wayne	3			3	3	3				3
Williams	1			1	2	1				1
	8 Tests	S	MA	TURITY	(relat	ive da	te)			20 Tests
Calland	+3.0	+ 5	+ 5	+ 2	+4	+4	0	+2	+2	+0.7
Wayne	10-12	10-15	10-14	10-13		7 10-3	9-25	10-24	10-6	9-17
SL12	+0.8	+ 2	+ 3	- 2	+1	+1	+1	0	0	+2.1
Williams	+3.3	+ 7	+ 4	- 1	+5	+4	+1	+4	+2	+3.3
L66L-172	-2.5	- 5	- 6	- 8	0	0	-2	+1	0	+0.4
Beeson(II)		-3		-16						
	7)	+21	+11			+6			+6	
Cutler 71(IV	,									
		6-1	6-10	6-8	7-13	3 5-24	5-27	6-26	6-25	5-18

st Not included in the mean

a Trenton in 1969-70

	Ohio				Indiar		
		Col-		•		-Worth-	
ville	ster	umbus	ton	ette	field	ington	ville
		19	71 YIE	LD (bu	(a)		
35.1	17.1	48.4	53.2	45.5	47.5	44.1	46.9
35.5	19.1	41.5	49.6	46.2		52.8	44.7
35.7	19.6	37.3	51.4	49.0		46.0	53.5
36.6	18.4		52.5		44.6		46.0
34.5	13.0	35.9	51.4	52.0	43.0	57.0	34.2
			7.7	7.1			01.0
			7.7 n.s.	7.4 n.s.	5.9 4.2	9.0 7.1	21.2 n.s.
32	32	28	30	38	38	38	40
3	3	3	3	3	3	3	3
4	4	4	4	4	4	4	4
a.	*	*	YIELD	RANK			مد
*	4	^ı	1	5	2	5	*2
3	2	3	5	4	5	3	4
2	1	4	3	3	1	4	1
1	3	2	2	2	3	2	3
5	5	5	3	1	4	1	5
	1	969-71	, 3-YE	AR MEA	N YIEI	LD_	
30.3	31.0	53.5	49.7	45.0	46.6	47.8	46.0
33.2		50.6	50.1		41.9		44.9
31.7	33.3	52.4	48.9	54.6	43.9		45.7
			YIELD	RANK			
		120	_	3	1	3	1
3	3	1	2	3			
3 1	3 1	1 3	2 1		3		3
3 1 2	3 1 2	1 3 2	1 3	2		2	
1	1	3	1	2	3	2	3
1 2	1 2	3 2 MATUF	1	1	3 2	1	3 2
1	1	3 2	3	1	3 2	1	3 2 * -8
1 2	1 2 +*3	3 2 MATUF	1 3 RITY (r	2 1 relativ	3 2 re date	2 1	3 2 * -8
1 2 -*	1 2 +*3	3 2 MATUF * 1	1 3 RITY (r	2 1 relativ	3 2 re date +3	2 1 2 -2	3 2
1 2 -1 10-9	1 2 +*3 9-28	3 2 MATUF * 1 3 10-11	1 3 RITY (r -1 9-25	2 1 relativ + 1 9-21	3 2 re date +3 9-26	2 1 -2 9-15	3 2 *8 9-21 +3 -2
1 2 -1 10-9 0	1 2 +*3 9-28 + 3	3 2 2 MATUF * 1 10-11 + 5	1 3 RITY (r -1 9-25 +1	2 1 relativ + 1 9-21 + 2	3 2 re date +3 9-26 +4	2 1 -2 9-15 +3	3 2 *-8 9-21 +3

+8

5-21

117

+ 9

5-18

126

5-18

131

+ 9

146

5-14

137

5-19

143

5-18 5-21

127

+5

5-22

122

48.0 44.4 49.7 50.5 44.6 5 10.9 9.7 30 4 3	Jr- bana 52.7 46.6 51.5 54.4 54.7 2.4 2.4 30 4	Gir- ard 197 36.2 44.5 47.3 41.0 40.6 7.2 2.5 30 4 3	Edge- wood 1 YIELD 42.9 46.6 46.3 45.5 4.4 3.7 38 4	51.5 47.9 51.7 50.0 51.2 3.6 3.4 38	55.9 50.9 56.3 54.6 53.7	58.8 49.2 55.9 56.7 54.1 3.6 3.5 30
48.0 5 44.4 4 49.7 5 50.5 5 44.6 5 10.9 9.7 30 4 3	52.7 46.6 51.5 54.4 54.7 2.4 2.4 30	197 36.2 44.5 47.3 41.0 40.6	1 YIELD 42.9 46.6 46.3 46.3 45.5 4.4 3.7 38 4	(bu/a) 51.5 47.9 51.7 50.0 51.2 3.6 3.4 38 4	55.9 50.9 56.3 54.6 53.7 3.5 3.5	58.8 49.2 55.9 56.7 54.1 3.6 3.5 30
44.4 4 49.7 5 50.5 5 44.6 5 10.9 9.7 30 4 3	16.6 51.5 54.4 54.7 2.4 2.4 30	36.2 44.5 47.3 41.0 40.6 7.2 2.5 30 4	42.9 46.6 46.3 46.3 45.5 4.4 3.7 38	51.5 47.9 51.7 50.0 51.2 3.6 3.4 38	50.9 56.3 54.6 53.7 3.5 3.5 3.7	49.2 55.9 56.7 54.1 3.6 3.5 30
44.4 4 49.7 5 50.5 5 44.6 5 10.9 9.7 30 4 3	16.6 51.5 54.4 54.7 2.4 2.4 30	44.5 47.3 41.0 40.6 7.2 2.5 30 4	46.6 46.3 46.3 45.5 4.4 3.7 38	47.9 51.7 50.0 51.2 3.6 3.4 38	50.9 56.3 54.6 53.7 3.5 3.5 3.7	49.2 55.9 56.7 54.1 3.6 3.5 30
49.7 5 50.5 5 44.6 5 10.9 9.7 30 4 3	2.4 2.4 30	47.3 41.0 40.6 7.2 2.5 30 4	46.3 46.3 45.5 4.4 3.7 38 4	51.7 50.0 51.2 3.6 3.4 38	56.3 54.6 53.7 3.5 3.5 3.7	55.9 56.7 54.1 3.6 3.5 30
50.5 5 44.6 5 10.9 9.7 30 4 3	2.4 2.4 30 4	7.2 2.5 30 4	46.3 45.5 4.4 3.7 38 4	50.0 51.2 3.6 3.4 38 4	54.6 53.7 3.5 3.5 3.7	56.7 54.1 3.6 3.5 30
44.6 5 10.9 9.7 30 4 3	2.4 2.4 30 4	7.2 2.5 30 4	45.5 4.4 3.7 38 4	3.6 3.4 38 4	3.5 3.5 3.7	3.6 3.5 30
10.9 9.7 30 4 3	2.4 2.4 30 4	7.2 2.5 30 4	4.4 3.7 38 4	3.6 3.4 38 4	3.5 3.5 37	3.6 3.5 30
9.7 30 4 3	2.4 30 4	2.5 30 4	3.7 38 4	3.4 38 4	3.5 37	3.5 30
30 4 3	30 4	30 4	38 4	38 4	37	30
3	4	4	4	4		
3					1.	4
3	3	3	3	_	4	•
				3	3	3
			YIELD	RANK		
	3	5	5	2	2	1
5	5	2	1	5	5	5
2	4	1	2	1	1	3
ī	2	3	2	4	3	2
4	ī	4	4	3	4	4
						
	19	969-71	, 3-YEA	R MEAN Y a	IELD	
53.1 4	18.2	47.3	47.8	49.0	54.7	49.4
	17.5		46.0	51.3	53.4	45.4
	50.3	49.3	47.5	51.1	56.0	50.0
			YIELD			
1	2	3	1	3	2	2
3	3	1	3	1	3	3
2	1	2	2	2	1	1
	<u>N</u>	MATURI	TY (rel	ative da	te)	
	+ 2	0	-1	+ 6	+2	+ 4
ć	9-26	9-11	9-18	9-7	9-8	9-8
	+ 2	+3	+1	+ 4	+3	+ 3
	+ 5	+1	+4	+ 5	+2	+ 5
	- 2	-1	-2	+ 3	+1	+ 1
	-14	-7	- 9	- 3	-7	- 4
	+ 7	+9	+7	+11	+8	+10
6-7 5	5-15	5-16	6-2	5-14	5-19	5-18
	L34	118	108	116	112	113

Iov			issour		S.D.	Nebra	aska]	Kansas		
	Ottu-	Spick-			Elk	Con-		Pow-	Man-	Manhat-	Ot-	Col-
Stuart	mwa	ard	umbia	Vernon	Point	cord	I	hattan	hattan	tan I	tawa	umbus
					1971 Y	IELD	(bu/a)					
36.1	44.1	36.3	50.0	49.9	33.2	34.6		31.3	27.3	74.4	62 2	26.3
36.1	48.2	38.3	46.8	54.1	35.7	35.1		30.6	30.6	67.9		27.7
38.0	48.9	35.9	48.2	53.1	31.8		45.3	32.4	28.1	67.3		31.8
37.2	46.1	34.4	46.5	52.2	29.8	30.9		30.9	22.8	69.4		27.7
34.7	46.5	35.3	47.0	56.2	34.4	34.7		31.1	28.9	75.6		26.8
6.1	6.4	8.5	7.7	7.5	10.6	4.5	5.1	10.6	9.8	8.4	6.4	6.3
3.0	4.0	4.6	5.4	7.1	n.s.	2.8	4.1	n.s.	4.1	n.s.	n.s.	2.7
27	27	15	15	15	40	30	30	30	30	30	30	30
4	4	4	4	4	3	4	4	3	3	3	3	3
4	4	4	4	4	4	3	3	4	4	4	4	4
					YIE	LD RAI	1K					
3	5	2	1	5	3	3	4	2	4	2	2	5
3	2	1	4	2	1	1	2	5	1	4	5	2
1	1	3	2	3	4	4	3	1	3	5	3	1
2	4	5	5	4	5	5	5	4	5	3	3	2
5	3	4	3	1	2	2	1	3	2	1	1	4
				1969	-71, 3-	YEAR 1		IELD				
70-71			70-71				70-71				1.2.2	1
39.7	46.9	38.4	40.9	42.2	33.2	40.0		42.3		74.3	48.9	
39.0	47.7	36.1	38.7	42.7	35.9	38.6		38.5		66.4	45.8	
40.7	50.0	39.7	41.2	43.3	32.0	39.2	41.5	43.2		68.7	49.5	24.7
					YIE	LD RAI	<u>1K</u>					
2	3	2	2	3	2	1	2	2		1	2	2
3	2	3	3	2	1	3	1	3		3	3	2 1
1	1	1	1	1	3	2	3	1		2	1	1
				MAT	URITY (relati						
+2			+1		0	0	0	+ 1	0	- 2	- 3	0
9-16			9-14		10-9	10-1	9-28	9-11	9-9	9-15	9-14	9-6
+3			+2		+3	+2	+1	+ 1	0	+ 1	+ 2	+1
+6			+2		+2	+2	+2	+ 6	0	+ 3	+ 3	0
+1			+1		0	-1	-4	+ 4	0	0	0	+2
			-7				-9	- 8	-8	- 9	-12	
			+7				+4	+12	+6	+11	+ 3	
5-14	5-16	5-13	5-19	5-11	5-22	5-21	5-26	5-17	5-6	5-3	5-7	6-7
2-14						133	125	117	126	135	130	91

	East	Penns	ylvania	N.J.			Marylan	d		Cen-
Strain	Coast		Landis-		Taney					tral
	Mean	Park	ville	phia	townB	ville	town	townB	ticoB	Mean
	8 Test	s			LODGI	NG (sco	re)			23 Tests
Calland	2.3	2.8	2.5	2.8	1	3	2	2	2	2.1
Wayne	2.6	2.8	3.0	3.0	2	4	2	2	2	2.2
SL12	2.7	3.5	3.2	3.5	2	4	2	2	1	2.5
Williams	1.5	1.5	1.2	2.3	1	3	1	1	1	1.7
L66L-172	1.7	1.8	2.0	3.1	ī	3	ī	ī	1	1.6
	8 Test	s			HEIGH'	T (inch	es)			23 Tests
Calland	35	41	42	39	30	42	 35	21	29	42
Wayne	34	40	40	38	29	41	35	22	28	41
SL12	36	42	41	39		44	35 37	24	29	44
Williams					29				29	41
	34	39	38	36	27	41	35	26		
L66L-172	32	37	37	26	28	41	35	24	28	39
	8 Tests	S		SE	ED QUA	LITY (s	core)			22 Tests
Calland	2.4	2.0	5.0	2.1	2.3	2	1	2	3	2.0
Wayne	2.6	2.2	5.0	3.1	1.7	2	2	3	2	1.9
SL12	3.1	2.0	5.0	2.8	2.2	3	2	4	4	2.1
Williams	2.0	1.5	3.0	2.1	1.3	2	ī	2	3	1.6
L66L-172	2.5	2.0	4.2	3.0	1.8	2	2	2	3	1.6
							100)			19 Tests
•	B Tests	5			SEED S.	IZE (g/	100)			
Calland	20.7	21.4	24.6	25.0	16.5	18.6	20.2	18.0	21.1	16.5
Wayne	20.4	20.5	32.1	22.0	15.7	16.9	20.1	17.3	18.8	16.6
SL12	19.6	20.9	23.2	23.0	15.8	17.9	20.6	16.7	18.9	17.1
Williams	19.7	20.6	21.4	25.0	15.7	18.3	19.5	17.7	19.1	16.5
L66L-172	16.9	17.7	19.2	18.0	14.7	16.0	17.6	15.2	17.0	14.5
1	+ Test	s			PRO'	TEIN (%)			13 Tests
Calland	41.6			41.5	41.6	42.0	41.4			39.5
	43.1					44.1				41.4
SL12	43.6			45.3		43.4	43.6			41.6
Williams				42.9	40.3	42.6	41.3			40.8
L66L-172				41.7		42.2	40.7			39.9
TOOT-1/5	41.0			41./	41.0	72.2	+0./			39.9
1	+ Test	S			0	IL (%)				13 Tests
Calland	20.3			20.3	19.3	20.8	20.7			21.5
Wayne	21.0			20.9	20.1	21.7	21.3			22.1
SL12	20.5			19.6	19.8	21.4	21.2			21.9
Williams				21.4	21.2	21.9	22.2			22.6
L66L-172				21.1	20.3	21.9	22.2			22.5
2001 172	2104			2101	20.0	21.5	4402			22.5

	Ohio				Indian	na	
Hoyt-	W00-	Col-	Bluff-	-Lafay-	-Green	-Worth-	Evans-
ville	ster	umbus	ton	ette		ington	
			LODGII	NG (sc	ore)		
1.5	1*	1*	3.3	3.0	1	2.9	3. 1
1.9	ī	2	3.6	3.3	1	2.1	2.0
2.0	ī						
		1	3.6	3.4	1	2.9	3.0
1.0	1	2	2.9	3.1	1	1.5	1.9
1.0	1	2	2.5	2.4	1	1.5	1.4
			HEIGHT	(inch	nes)		
37*	29 *	36	41	47	41	44	43
41	26	34	41	46	36	43	41
41	25	33	44	49	42	47	45
42	27	34	40	50	36	44	40
38	24	32	38	48	34	43	36
			ED QUAI	LITY (s	core)		
1.7	2.0	3.7	2.5	1.5	2.5	1.0	2. 0
1.5	1.8	4.5	1.5	1.5	2.5	1.5	3.0
2.2	2.0	3.2	1.5	2.0	2.5	1.5	3.0
1.0	1.8	3.2	1.5	1.5	1.5	1.5	1.5
1.0	1.2	4.2	1.0	1.5	2.0	1.5	2.0
*	*	*	SEED SI	IZE (g/	100)		*
19.4	15.3	21.3	21.9	16.8	19.4	15.0	17.4
19.4	15.2		19.7	18.4	19.6	16.3	19.0
19.5	15.3		21.1	18.0	20.0	16.2	20.0
19.1	16.8		21.1	20.2	20.0	16.0	18.6
19.1	13.3		16.9	16.5	17.6	14.4	15.9
			PROT	TEIN (%	<u> </u>		
		H1 0	1101		- /	40.3	
		41.0		38.2			
		42.5		42.0		41.5	
		43.8		42.8		41.8	
		43.9		41.1		39.9	
		42.6		40.0		40.0	
			01	[L (%)			
		20.9		22.0		21.0	
		22.5		21.8		22.5	
		22.4		21.4		21.5	
		22.0		22.6		22.9	
		22.7		22.0		23.0	

Ky.			I	llinois						
Hend-	Ur-	Gir-	Edge-	Belle-	Eldo-	Carbon-				
erson	bana	ard	wood	ville	rado	dale				
		Ī	ODGING	(score)						
2.0	3.1	3.3	3.7	1.3	2.5	1				
3.0	3.0	2.9	2.5	1.3	3.0	1				
3.0	2.5	4.0	2.9	1.3	2.5	2				
1.7	1.7	1.8	2.2	1.2	1.7	1				
1.7	1.6	1.5	1.5	1.2	1.7	1				
HEIGHT (inches)										
41	44	51	46	43	44	36				
34	43	47	43	41	43	35				
40	42	49	46	49	46	38				
35	48	49	43	41	39	37				
34	43	46	40	42	41	32				
		SEED	QUALIT	TY (score	:)					
2	2.5	3.5	3.3	2.8	2.1	1				
2	2.2	2.2	2.8	2.6	1.9	1				
3	2.2	2.5	3.1	2.6	2.0	3				
2	1.3	2.2	2.2	2.4	1.6	1				
2	1.4	2.0	1.9	2.3	1.4	1				
		SE	ED SIZE	E (g/100)	_					
18.7	16.8	15.3	15.9	16.2	18.1	19.4				
15.9	19.0	16.0	15.9	16.1	17.3	18.3				
18.7	18.8	17.4	16.5	16.9	19.2	21.0				
16.5	18.3	15.3	16.3	15.9	17.1	18.9				
16.0	15.8	13.2	13.2	14.3	15.4	16.2				
			PROTE	[N (%)						
39.6	40.2	40.6			39.8					
40.5	42.6	43.6			42.5					
41.2	41.9	40.1			42.9					
40.6	41.0	41.8			39.9					
39.8	39.7	40.8			41.6					
			OIL	(%)						
20.9	21.2	20.7			22.5					
22.6	21.2	20.9			22.8					
21.9	21.7	22.2			22.2					
	22.0	21.9			24.2					
22.7	22.0				2 1 0 2					

	wa	M.	issour	i	S.D. Nebraska			Kansas				
	Ottu-	Spick-		Mt.	Elk	Con-	Mead	Pow-	Man-	Manhat-	Ot-	Col-
Stuart	mwa	ard	umbia	Vernon	Point	cord	I	hattan	hattan	tan I	tawa	umbus
					LODGI	NG (sc	ore)					
1.6	3.0	2.5	2.6	3.2		1	1.3	1	1	1.5	1.8	1.5
1.8	3.2	2.4	2.1	2.8		2	1.6	1	1	2.9	1.9	
1.6	3.4	2.7	3.5	3.2		2	1.9	1	1	3.1	2.1	
1.4	2.4	1.8	2.0	2.4		1	1.9	1	1	1.8	1.5	
1.4	2.8	2.1	2.3	2.7		1	1.3	1	1	1.6	1.5	
					HEIGH	T (inc	hes)					
	46	42	41	38	39	41	45	31	38	44	44	42
	48	41	41	39	40	41	46	30	40	44	44	43
	52	42	45	40	41	41	47	32	42	45	44	43
	47	40	42	37	40	38	47	27	40	45	43	38
	48	39	39	37	38	35	44	28	39	41	42	34
				Si	EED QUA	LITY (score)					
1	1		2.8	2.0	1.2		1.5	2.1	1.9	2.0	1.7	2.0
ī	ī		2.6	2.5	1.5		1.2	2.0	1.7	2.1	1.8	
ī	ī		2.8	2.5	1.5		1.2	2.2	1.5	2.3	2.0	
ī	ī		2.3	1.8	1.2		1.4	1.9	1.4	1.8	1.9	
ī	ī		2.2	2.0	1.2		1.0	1.8	1.7	1.7	1.7	
					SEED S	IZE (g	(/100)					
	18.4				16.1		16.0	13.9	9.7	18.8	15.5	12.0
	18.0				16.2		17.2	12.8	10.6	20.1		10.8
	18.0				15.3		17.7	13.0	9.5	19.6		11.2
	18.7				14.7		16.1	13.4	9.5	18.1		11.4
	17.0				13.5		14.7	12.0	9.1	16.4	13.9	
					PRO	TEIN (%)					
	39.8		40.5		37.9		38.5	39.0		38.4		
	42.5		41.3		38.7		40.3	39.4		41.1		
	42.6		41.4		39.0		40.8	40.0		42.0		
	41.5		41.3		39.9		40.3	39.6		40.1		
	40.1		40.3		38.2		38.1	38.8		38.2		
					0	IL (%)	_					
	20.8		20.6		21.8		21.9	22.1		22.9		
	21.5		22.8		21.6		22.3	21.9		22,9		
	22.4		21.2		22.2		21.9	21.9		22.4		
	22.5		22.5		21.9		21.9	22.9		23,5		
	22.5		21.7		22.8		21.5	23.1		23.9		

Strain		Parentage	Generation Composited	Previous Testing
1. 2. 3. 4.	Calland Kanrich Wayne SL10	$Kanro^2 \times Richland$ $Wayne-Rps(L15) \times (Wayne^{10} \times Kanrich)$	F_7 3 F_3 lines	58 P II
5. 6. 7. 8.	SL11 L67U-1615 L67U-1630 L67U-1827	Wayne-Ir Rps x (Wayne ¹⁰ x Kanrich) Provar x Magna " Provar x Disoy	3 F ₄ lines F ₃ F ₃ F ₃	P III P III P III

This test was grown at 11 locations in 1971. The two Wayne isolines, SL10 and SL11, were developed by backcrossing to Wayne to add Phytophthora resistance (Rps), downy mildew resistance (Rpm), and, in the case of SL11, a gene for brown hilum (r). Judging from the mean performance there may be some additional genetic difference from Wayne. They yielded as well or somewhat higher than Wayne (possibly caused by the disease resistance) but showed a tendency to be slightly later, taller, and more lodged. This has occurred before with Rps isolines and may be pleiotropy or an effect of linked genes.

The three L strains were re-entered from last year's Preliminary Test III. They may best be compared to Kanrich since they are entered as potential large-seeded varieties. The seeds are somewhat smaller than those of Kanrich but the yields are much higher, although distinctly below Wayne and Calland. Two of these lines carry yellow hilum mixed with brown or buff hilum, while the other one is uniformly buff hilum. They averaged somewhat poorer in seed quality than Kanrich and this may present a problem should they be used for edible purposes. Lodging and probably shattering resistance is improved over Kanrich.

PRELIMINARY TEST III, 1971

Regional Summary

			Matu-	Lodg-		Seed	Seed	Seed Compo	sition
Strain	Yield	Rank	rity	ing	Height	Quality	Size	Protein	Oi1
No. of Tests	10	10	9	10	9	10	8	6	6
Calland	49.5	4	0.0	2.3	44	1.8	17.1	40.3	21.3
Kanrich	38.2	8	-1.0	3.3	41	2.0	27.7	41.3	20.9
Wayne	49.7	3	9-20	2.3	44	1.8	17.7	41.9	22.0
SL10	50.1	2	+1.2	2.9	45	1.8	18.1	42.0	21.6
SL11	52.2	1	+0.8	2.9	45	1.8	17.9	42.3	21.8
L67U-1615	44.5	5	-0.1	2.4	45	2.8	25.1	41.6	21.8
L67U-1630	42.9	7	-1.1	2.5	45	2.4	24.3	43.7	21.0
L67U-1827	43.8	6	-4.3	1.8	41	2.2	22.6	41.8	21.9

Disease Data

		BE	3	B	P	BS	В	SR	FE ₂		PR	
Strain		rb. 11.	Ames Iowa	Ur	b.	Laf.	Laf.	Urb.	Laf.	Laf.	Ames Iowa	Ston. Miss.
	n1	n2	n	a 2	al	n	n %	n %	а	а	а	n
Calland	1	3.5	2	S	3	3	69	100	5	R	R	1
Kanrich	3	3.5	3	S	4	3	80	90	1	S	S	3
Wayne	2	2.5	1	R	1	4	45	100	2	S	S	1
SL10	2	2.5	1	R	1	4	79	100	1	R	R	1
SL11	2	2.5	1	R	1	5	82	90	2	R	н	1
L67U-1615	1	2.5	2	S	3	5	75	80	1	S	S	3
L67U-1630	1	3.5	2	S	3	3	89	70	Н	S	S	3
L67U-1827	1	4.0	2	S	3	5	56	100	1	S	S	2

Descriptive and Shattering Data

		Sì	nattering
Strain	Descriptive	Kansas Manhattan	Mississippi Stoneville
	Code	2 wk. 4 wk.	clay loam
Calland	PTNBr DYB1	3 4	4 3
Kanrich	PGNBr DYLbf	4 5	5 5
Wayne	WTNBr SYB1	2 3	5 4
SL10	WTNBr SYB1	2 3	5 3.5
SL11	WTNBr SYBr	3 4	5 3.5
L67U-1615	PGNBr DYY+Bf	1 5	3 3
L67U-1630	PGNBr DYBf	1 3	4 4.5
L67U-1827	PTNBr DYY+Br	1 4	4 5

		Md.	Ohio	Indi	ana	Illin	nois	Iowa		Mo.	Neb.	Kansas
Strain	Mean	Clarks-	Col-	Lafay-	Worth-	Ur-	Gi-		Ot-	Col-	Mead	Manhat-
		ville	umbus	ette	ington	bana	rard	Stuart	tumwa	umbia	I	tan I
	10 Tes	sts	*	1	971 YIE	LD (b	1/a)					
Calland	49.5	42.5	47.6	55.1	53.1	53.9	39.0	39.8	45.1	45.3	46.2	75.1
Kanrich	38.2	38.1	31.7	44.5	44.6		28.5	33.9	36.7	37.2	38.4	42.0
Wayne	49.7	42.2	43.2	52.0	54.7		45.5	40.6	48.7	44.8	46.3	69.5
SL10	50.1	48.8	44.2	59.6	57.9		49.0	41.0	52.7	41.0	39.7	63.4
SL11	52.2	48.7	35.5	60.6	55.9	56.0	50.7	43.0	51.0	46.7	41.1	68.6
L67U-1615	44.5	35.1	37.6	51.6	49.6	47.5	35.6	39.2	43.0	39.9	38.4	65.1
L67U-1630		31.7	35.7	48.6	43.3		40.8	32.2	40.3	38.8	38.2	63.5
L67U-1827		36.0	35.8	49.9	47.3		39.0	32.5	38.0	38.5	45.6	63.3
C.V. (%)		9.7		6.2	10.6	2.9	7.7	9.8	6.5	6.8	11.1	9.5
L.S.D. (59	%)	8.5		7.8	n.s.	3.4	7.5	8.8	6.8	6.1	10.6	14.3
Row Sp. (30	28	38	38	30	30	27	27	15	30	30
Rows/Plot		3	3	3	3	3	3	4	4	4	4	3
Reps		2	2	2	2	2	2	2	2	2	2	2
	10 Tes	ts			YIELD	RANK						
Calland	4	3	1	3	4	2	5	4	4	2	2	1
Kanrich	8	5	8	8	7	8	8	6	8	8	6	8
Wayne	3	4	3	4	3	3	3	3	3	3	1	2
SL10	2	1	2	2	1	5	2	2	1	4	5	6
SL11	1	2	7	1	2	1	1	1	2	1	4	3
L67U-1615	5	7	4	5	5	6	7	5	5	5	6	4
L67U-1630	7	8	6	7	8	4	4	8	6	6	8	5
L67U-1827	6	6	5	6	6	7	5	7	7	7	3	7
	0 m			> 44 Present	- mes /			- \				
	9 Tes	ts	*	MATUR	ITY (re	lativ	e date	<u>e)</u>				
Calland	0.0	+3	+3	+1	-4	+2	0	+1		0	-2	-1
Kanrich	-1.0	+3	- 5	-1	-2	-8	+1	0		0	+2	
Wayne	9-20	10-3	10-15	9-21	9-16	9-26	9- 8	9-18		9-13	9-26	
SL10	+1.2	+1	+2	+2	+2	+1	+2	+2		+2	-1	
SL11	+0.8	0	+2	+1	+2	+1	+3	0		-1	0	+1
L67U-1615	-0.1	-1	-6	-1	-1	- 6	0	+4		0	+1	+3
L67U-1630	-1.1	-1	-7	~2	-4	- 6	-1	+2		0	-1	+3
L67U-1827		-1	-4	-8	- 5	-11	- 4	-3		-3	- 4	0
Beeson (II	r)		- 15	-10	- 7	- 14	- 4			- 6	- 7	- 9
Cutler 71		+6	+5	+9	+7	+7		+5		+10	+6	
Date Plnt		5-24	5 - 18	5-18	5-21	5 - 15	5-1	6 5 - 14	5-16	5-19	5-26	5-3

Str	ain	Parentage	Generation Composited	Previous Testing*
1.	Cutler	Cl069(Kent sib) x Clark	F ₇	8
2.	Cutler 71	Cutler4 x Kent-Rps rxp(SL5)	$6 F_3'$ lines	2
З.	Kent	Lincoln x Ogden	F_{7}°	17
4.	Bonus (C1474)	Cl266R(Harosoy x Kent sib Cl079) x Cl253(Blackhawk x Harosoy)	F ₆	2
5.	C1483	Cl266 x Cl265(Harosoy x Cl079)	F ₇	PIV
6.	L66-1359	Wayne x L57-0034(Clark x Adams)	F	1
7.	L66L-144	11 11	F6	1
8.	Wye(Md63-3303-3)	2nd cycle intermated population of Adams, Lincoln, Perry, Wabash, C799, C985, FC 33.243, and L46-1503.	F ⁶ 7	1 (69)
9.	Md66-1258	2nd cycle intermates	F ₆	PIV

^{*} Number of years in this test or name of last year's test.

This test was grown at nine East Coast locations and 22 locations in the Central area. Cutler 71 has averaged slightly below Cutler in mean yield despite its PR resistance. It averaged slightly earlier and shows a tendency toward being taller and more lodging susceptible at several locations. The newly released variety Bonus has been in the test for three years and the three year mean tables show it to be first in yield in the Central area but slightly below the Cutlers in the East. It is several days earlier than Cutler, tall, high in protein, and resistant to Phytophthora. On the negative side is a slight tendency to lodge and to shatter. It showed a very short hypocotyl elongation in the 25 C test.

Wye, also recently released, was not tested in 1970 and so we have presented a 1969, 1971 2-year table. Wye has generally averaged a little below Cutler and Bonus in yield, especially in the Central area. It is a few days later than these although not so late as Kent, and is quite short and lodging resistant.

Two strains, L66-1359 and L66L-144, have been in the test two years and mean yields put them at the top in both areas. They are slightly earlier than Bonus and are more lodging and shattering resistant. They have somewhat lower protein contents but are high in oil. L66-1359 has ranked first in yield in both East and Central areas in both 1970 and 1971. It is from the same cross as Williams and about two days later.

There are two new entries this year. Md66-1258 tied the yield of top-ranked L66-1359 in the East but was somewhat below it in the Central area where its average performance was nearly identical to Cutler's for all traits measured. The other new strain C1483 is later in maturity, almost as late as Kent. It combines height (tallest in the test) with good lodging resistance. It yielded about the same as Kent but not as well as some of the earlier strains.

Disease Data

		В	В			BP		E	S		BSR		DM
Strain	Url Il	ana l.		mes owa	Urb Ill	ana	Ames Iowa	Laf. Ind.	Ames Iowa	Laf. Ind.	Urb. Ill.	St.P. Minn.	Belleville Illinois
	nl	n2	n	a	a2	al	n	n	n	8	n %	n %	n
Cutler	2	2.7	2	3.5	S	2	4	4	4	22	90	65	3.0
Cutler 71	1	2.7	2	4	S	3	3	3	4	25	100	60	3.1
Kent	3	4.0	1	4	S	3	4	3	4	25	100	20	2 . 0
Bonus	4	3.7	2	4	S	3	3.5	3	3	12	100	25	4.0
C1483	1	3.3	1	4	S	2	3.5	5	4	6	90	85	2.7
L66-1359	1	1.0	1	1.5	R	2	2	5	4	25	90	50	3.7
L66L-144	1	1.7	1	2.5	Ŕ	1	2	4	2.5	4	90	95	4.0
Wye	2	3.3	2	4.5	S	3	4	3	2	85	100	90	4.0
Md66-1258	1	3.0	2	2.5	S	3	4	4	4	41	100	50	3.3

	FE ₂	_PM		PI	?	PS		PS	В
Strain	Laf.	Har. Ont.			Stoneville Miss.	Georgetown Delaware	•	Georgetown Delaware	Centerton N. Jersey
	a	a	a	a	n	n	n %	n	n
Cutler	1	R	S	S	2	4.1	45	4.3	1.8
Cutler 71	1	R	R	R	1	3.8	23	3.3	1.9
Kent	1	R	S	S	2	4.3	22	2.6	1.6
Bonus	5	S	R	R	2	4.2	17	3.0	1.5
C1483	1	S	S	S	1	4.2	27	4.2	1.9
L66-1359	2	R	S	S	1	3.7	14	4.1	2,3
L66L-144	Н	R	S	S	2	3.5	15	3.6	2.0
Wye	1	R	S	S	3	3.2	20	2 . 2	1.8
Md66-1258	1	R	S	S	2	4.3	51	3.8	1.9

Descriptive and Shattering Data

							Shatte	ring			Нуро-
			Per-	Fluor-	Kansas	Miss.		N.J.	Tex		cotyl
Strain	Descri	ptive	oxi-	escent	Manhattan	Stone	ville	Center-		bock	Length
	Code	•		Light	2 wk。	clay	loam	ton	10/5	10/13	cm
Cutler	PTNBr	SYB1	L	L	3	4	3	1.0	1.0	1.5	10
	PTNBr		L+H	L	4	3	2	1.0	1.0	1.5	7
Kent	PTNBr		Н	L	3	4	3.5	1.0	1.0	1.5	22
Bonus	PGNBr		L	L	5	5	4	2.5	2.5	5.0	8
C1483	PGNBr		Н	L	5	3	3	2.5	1.0	2.5	21
L66-1359	WTNTn	DYB1	L	L	4	3	3	2.0	1.2	2.0	24
L66L-144	WTNTn		L	L	4	4	2	1.8	1.5	2.0	23
Wve	WTNBr		L	L	2	3	2.5	1.5	1.2	1.5	19
Md66-1258			L	L	3	4	2	1.0	1.0	1.2	10

East Coast Regional Summary

			Matu-	Lodg-		Seed	Seed	Seed Compo	sition
Strain	Yield	Rank	rity	ing	Height	Quality	Size	Protein	Oil
				197	1				
No. of Tests	9	9	8	9	9	9	9	5	5
Cutler	45.0	1	+0.3	2.1	35	3.0	20.6	41.2	21.3
Cutler 71 44.4	44.6	4	10-12†	2.3	38	2.8	20.5	41.0	21.6
Kent 98.3	43.5	7	+4.8	1.8	36	2.6	19.7	40.6	21.7
Bonus	42.9	9	-1.6	1.9	37	2.5	18.8	42.0	21.9
C1483	43.7	6	+2.4	1.9	40	2.3	18.2	41.0	22.0
L66-1359 45.6	45.0	1	-4.0	2.0	34	2.5	20.3	39.5	22.8
L66L-144	43.8	5	-3.1	1.9	34	2.5	20.2	39.1	22.9
Wye	43.5	7	+1.8	2.1	30	2.5	17.1	39.7	23.0
Md66-1258 44 3	~45.0	1	+1.6	2.0	35	2.8	20.2	40.5	21.4

^{† 123} days after planting

			1970	-71, 2-	year mea	ın			
No. of Tests	15	15	14	15	15	15	15	9	9
Cutler	42.6	3	+0.8	1.8	36	2.7	19.3	41.7	21.3
Cutler 71	41.3	4	10-4+	2.0	38	2.6	19.3	41.6	21.4
Kent	39.7	6	+2.1	1.6	37	2.4	18.3	41.3	21.5
Bonus	40.6	5	-1.4	1.7	38	2.5	18.0	42.9	21.7
L66-1359	44.4	1	-3.5	1.7	35	2.4	19.4	40.5	22.6
L66L-144	43.1	2	-3.5	1.8	35	2.5	19.5	40.0	22.8

^{† 120} days after planting

			1969	71, 2-	year mea	n			
No. of Tests	15	15	13	15	15	15	15	8	8
Cutler	44.7	1	-0.2	2.1	39	2.6	19.5	40.7	22.0
Cutler 71	43.5	2	10-5†	2.2	41	2.4	19.4	40.2	22.1
Kent	42.8	5	+4.1	1.8	39	2.3	18.6	40.6	22.1
Bonus	43.0	3	-1.6	2.1	42	2.4	17.9	41.9	22.4
Wye	42.9	4	+2.0	1.8	33	2.2	16.5	39.4	23.3

^{† 122} days after planting

			1969	-71, 3-	year mea	n			
No. of Tests	21	21	19	21	21	21	21	12	12
Cutler	43.1	1	+0.3	1.9	38	2.5	18.9	41.1	22.0
Cutler 71	41.7	2	10-2+	2.0	40	2.4	19.0	40.9	22.0
Kent	40.5	4	+2.9	1.7	39	2.3	18.0	41.1	22.3
Bonus	41.4	3	-1.1	1.8	41	2.4	17.7	42.5	22.2

^{† 120} days after planting

Central Regional Summary

			Matu-	Lodg-		Seed	Seed	Seed Compo	osition
Strain	Yield	Rank	rity	ing	Height	Quality	Size	Protein	Oil
				19	71				
No. of Tests	20	20	17	20	19	20	17	12	12
Cutler	44.9	2	+0.4	1.9	44	1.8	16.8	40.7	22.0
Cutler 71	44.3	6	9-22+	2,2	45	2.0	16.4	41.0	22.0
Kent	42.1	8	+5.1	1.9	43	2.0	16.4	40.7	22.2
Bonus	44.7	3	-2.0	2.2	47	1.7	15.7	42.4	22.1
C1483	42.6	7	+4.6	2.1	50	2.2	15.8	41.5	21.8
L66-1359	46.0	1	-3.0	1.9	42	1.9	16.4	40.3	23.3
L66L-144	44.6	5	-3.4	1.8	42	1.9	16.3	39.4	23.4
Wye	42.1	8	+0.6	1.9	37	1.8	15.2	39.7	23.4
Md66-1258 2	44.7	3	+1.9	1.8	43	1.8	16.3	40.6	22.1

† 127 days after planting

			197	0-71, 2	year me	an			
No. of Tests	36	36	30	34	35	36	30	22	22
Cutler	44.3	3	+0.8	2.1	42	2.2	17.7	40.8	21.9
Cutler 71	43.9	5	9-26+	2.3	43	2.3	17.4	41.0	21.9
Kent	42.6	6	+5.2	2.1	41	2.4	17.4	40.6	22.2
Bonus	44.2	4	-3.0	2.2	45	2.2	16.8	42.7	22.1
L66-1359	~45.5	1	-3.6	2.0	40	2.3	17.6	40.1	23.2
L66L-144	~44.8	2	-3.9	2.0	40	2.2	17.6	39.5	23.1

† 128 days after planting

			196	9,71, 2	year me	an			
No. of Tests	41	41	37	39	38	21	35	21	21
Cutler	45.3	2	+0.3	1.9	43	2.1	17.4	41.1	22.2
Cutler 71	44.7	3	9-25+	2.1	44	2.2	17.1	41.1	22.2
Kent	43.5	4	+4.7	1.8	42	2.2	17.0	41.0	22.3
Bonus	45.6	1	-2.4	2.3	47	2.0	16.4	43.1	22.3
Wye	42.6	5	+3.5	1.9	38	2.1	15.7	40 . 0	23.5

† 127 days after planting

			196	9-71, 3	-year me	an			
No. of Tests	5 7	57	50	53	54	57	48	31	31
Cutler	44.8	2	+0.6	2.0	42	2.3	17.8	41.0	22.0
Cutler 71	44.3	3	9-27+	2.1	43	2,3	17.5	41.0	22.0
Kent	43.4	4	+4.0	2.0	41	2.4	17.5	40.8	22.3
Bonus	45.0	1	-3.8	2.3	46	2.2	16.9	43.1	22.2

^{† 128} days after planting

	East	Penn.	N.J.	Del.			Mary.			
Strain		Landis-	Center-	George-	•		Queens-	Queens-		Quant
	Mean	ville	ton	town I	town B	ville	town	town B	wood	ico B
9	Test	5		1971	YIELD (1	ou/a)				
Cutler	45.0	54.3	44.6	54.6	30.4	40.2	46.9	45.7	37.4	51.3
Cutler 71	44.6	52.7	41.0	54.1	32.8	43.6	47.4	42.3	35.9	51.5
Kent	43.5	54.2	40.9	53.0	31.7	34.2	51.9	45.0	35.1	45.2
Bonus	42.9	51.0	44.2	56.6	28.4	39.9	45.7	40.4	30.8	49.1
C1483	43.7	48.4	37.8	52.1	30.3	38.2	51.9	41.9	38.0	54.5
L66-1359	45.0	52.5	37.0	56.3	32.4	43.1	51.7	44.4	34.2	53.4
	43.8	50.7	38.2	56.7	33.0	41.3	47.0	41.6	33.4	51.9
httre	43.5	50.3	39.3	56.5	36.6	42.2	48.6	43.4	27.1	47.5
Md66-1258		52.4	42.8	54.3	31.1	41.5	52.2	38.1	35.8	57.2
C.V.(%)		8.8	9.3	5.3	9.3	10.0	7.9	15.0	8.8	10.7
L.S.D.(5%)		n.s.	6.1	n.s.	4.9	5.7	3.9	10.5	3.0	7.8
Row Sp.(in	.)	30	30	36	15	30	30	15	38	15
Rows/Plot		3	3	3	5	3	4	5	4	5
Reps		4	4	4	3	,4	3	3	3	4
9	Tests	3		YII	ELD RANI	<u> </u>				
Cutler	1	1	1	5	7	6	8	1	2	6
Cutler 71	4	3	4	7	3	1	6	5	3	5
Kent	7	2	5	8	5	9	2	2	5	9
Bonus	9	6	2	2	9	7	9	8	8	7
C1483	6	9	8	9	8	8	2	6	1	2
L66-1359	1	4	9	4	4	2	4	3	6	3
L66L-144	5	7	7	1	2	5	7	7	7	4
Wye	7	8	6	3	1	. 3	5	4	9	8
Md66-1258	1	5	3	6	6	4	1	9	4	1
21	. Tests	3	196	59-71, 3	-YEAR MI	EAN YIEL	D			
					70-71			70-71		
	43.1			45.7	28.6	47.7	41.3	37.2	41.2	
Cutler 71				40.5	28.9	45.5	40.9	33.3	39.6	
	40.5			47.1	31.8	42.1	40.4	35.9	36.9	
Bonus	41.4			47.3	28.2	43.0	38.5	36.0	38.5	
				YI	ELD RANI	<u><</u>				
Cutler	1			3	3	1	1	1	1	
Cutler 71	2			4	2	2	2	4	2	
Kent	4			2	1	4	3	3	4	
Bonus	3			1	4	3	4	2	3	

B = after barley
* Not included in the mean

a Trenton 1969-70

Cen-	Ohio		Indiana	
tral	Col-	Lafay-		
Mean	umbus	ette	ington	ville
20 Tests		IELD (b	u/a)	
44.9	51.0	53.1	54,8	49.1
44.3	47.0	49.9	49.6	55.4
42.1	49.9	45.2	50.7	50.8
44.7	45.9	45.0	49.7	50.0
42.6	46.5	42.5	45.4	52.8
46.0	39.1	48.6	54.8	51.3
44.6	40.6	53.3	51,4	41.5
42.1	47.5	38.4	46.7	41.8
44.7	44.2	53.6	52.7	51.3
		11.0	12.1	13.6
		7.7	n.s.	n.s.
	28	38	38	40
	3	3	3	3
	4	4	4	4
	YIE	LD RANK		
2	*	3	1	7
6	4	4	7	í
8	2	6	5	5
3	6	7	6	6
7	5	8	9	2
1	9	5	1	3
5	8	2	4	9
8	3	9	8	8
3	7	1	3	3
57 Tests	196 3-YEAR	59-71 MEAN Y	IELD	
44.8	57.4	52.5	55.3	46.4
44.3	46.7	51.7	50.5	48.2
43.4	49.6	48.1	53.2	44.5
45.0	54.9	47.5	51.6	49.0
	YIE	LD RANK		
2	1	1	1	3
3	4	2	4	2
4	3	3	2	4
1	2	4	3	1

Ку.			llinoi		
Hend-	Ur-	Gir-		Belle-	
erson	bana	ard	wood	ville	rado
	19	71 YIE	LD (bu	<u>/a)</u>	
51.6	50.3	38.9	44.9	51.7	57.1
40.3	51.3	39.4	44.1	51.8	55.9
50.0	50.3	34.9	42.9	48.0	57.6
46.8 56.9	52。0 46。4	43.0 45.2	46.5 44.0	48.1 50.4	52.2 55.4
44.5	56.0	43.5	42,8	51.3	53.4
40.7 50.1	52.8 48.7	38.2 41.3	45.0 44.9	49.3 48.1	52.6 53.8
46.1	51.8	40.2	40.8	51.5	54.3
		10.2	1000	01.0	
11.0	5.1	5.5	3.4	4.7	5.3
8.8	4.5	3.8	2.6	7.9	5.0
30 4	30 4	30 4	38 4	38 4	37 4
3	3	3	3	3	3
		YIELD	RANK		
2	6	7	3	2	2
9	5	6	5	1	3
4 5	6 3	9 3	7 1	9 7	1 9
1	9	1	6	5	4
7		2	8	4	7
8	1 2	8	2	6	8
3	8	4	3	7	6
6	4	5	9	3	5
	1000 7	1 2 1	TAD MT	AN VICE	D
	1969-7	1, 3-Y	EAR ME	AN YIEL	<u>u</u>
49.1	46.4	46.5	47.1	51.3	56.0
46.0	48.0	44.7	47.4	51.9	53.6
48.7	47.4	41.3	48.2	51.3	
48.1	47.9	50.1	50.5	51.3	52.9
		YIELD	RANK		

56.9	46.4	45.2	44.0	50.4	55.4
44.5 40.7 50.1 46.1	52.8 48.7		45.0	51.3 49.3 48.1 51.5	52.6 53.8
11.0 8.8 30 4 3	5.1 4.5 30 4 3	5.5 3.8 30 4 3	3.4 2.6 38 4 3	4.7 7.9 38 4 3	5.3 5.0 37 4 3
		YIELD	RANK		
2 9 4 5 1 7 8 3 6	6 5 6 3 9 1 2 8	7 6 9 3 1 2 8 4 5	3 5 7 1 6 8 2 3 9	2 1 9 7 5 4 6 7 3	2 3 1 9 4 7 8 6 5
	1969-7	1, 3-Y	EAR ME	AN YIEL	<u>D</u>

2 3 4

2 1

Ill.	Io	wa		Missour	n1	Neb					
Carb-		Ot-	Col-	Mt.	Portage-	Mead	Pow-		Kansas	<u></u>	0-1
ondale	Stuart	tumwa			ville I	I		Man- hattan	Manhat-	0t-	Col-
								nattan	tan 1	Lawa	umbus
				-	1971 YIELD	(bu/a	<u>)</u>				
60.4	36.2	45.4	44.6	38.9	49.3	39.6	21.3	22.5	63.6	49.6	24.1
5 7. 7	33.7	44.5	44.0	46.0	41.5	37.1	21.2	21.7	65.5		24.5
54.5	34.4	40.7	42.0	50.5	41.7	23.8	20.6	14.4	63.7		23.2
55.4	32.6	43.4	45.6	41.1	44.4	36.7	27.6	24.4	67.9		26.3
56.8	33.7	42.1	41.1	44.2	31.3	23.7	21.1	17.3	59.8	45.4	27.7
60.0	37.9	45.4	45.1	49.0	42.6	39.6	22.7	21.9	72.0	57.7	23.1
54.6	36.3	48.7	44.8	45.1	42.9	41.3	23.4	24.5	68.2		22.3
55.8	31.0	37.8	39.4	43.6	42.3	42.1	22.6	25,2	61.1		24.5
61.4	34.6	44.3	45.9	45.7	43.8	36.1	21.3	22.1	67.5		23.2
5.3	6.1	6.4	11.1	10.1	22.0	C 0	10.5	10.7	0.0		^-
5.2	3.0	4.0	6.4	6.5	23.0 16.8	6.3 3.8	12.5	10.7	8.8	6.8	9.5
30	27	27	15	15	38	30	4.0 30	3.3 30	n.s. 30	30	n.s.
4	4	4	4	4	4	4	3	3	30	30	30 3
3	4	4	4	4	3	3	4	4	4	4	4
			• • • • • • • • • • • • • • • • • • •					······································	,		
					YIELD R	ANK					
2	3	2	5	9	i i	3	5	4	7	5	5
4	6	4	6	3	8	5	7	7	5	4	3
9	5	8	7	1	7	8	9	9	6	9	6
7	8	6	2	8	2	6	1	3	3	1	2
5	6	7	8	6	9	9	8	8	9	8	1
3	1	2	3	2	5	3	3	6	1	2	8
8	2	1	4	5	4	2	2	2	2	3	9
6	9	9	9	7	6	1	4	1	8	7	3
1	4	5	1	4	3	7	5	5	4	6	6
			70 71	1969-7	1, 3-YEAR			60 31			
110 0			70-71		26 0	70-71		69,71	62.5		22.2
48.9			39.1	41.2	36.8	37.0	38.4	35.2	63.5	43.1	
47.9 49.2			40.2 36.8	41.1 45.3	32.6 32.2	36.6 28.8	37.7 37.9	36.1 32.2	63.7 62.6	43.9 41.3	
47.7			40.2	35.9	31.9	37.5	38.5	35.8	71.4	46.4	
			1002		· · · ·						
					YIELD RA	ANK					
2			3	2	1	2	2	3	3	3	2
3			1	3	2	3	4	1	2	2	3
1			4	1	3	4	3	4	4	4	4
4			1	4	4	1	1	2	1	1	1

	East	Penn.	N.J.	Del.			Maryl			
Strain		Landis-		George-						
	Mean	ville	ton	town I	town B	ville	town	town B	wood	ico B
	8 Tests	s	MATUR	ITY (rel	ative d	ate)				
Cutler	+0.3	+2		0	+1	0	-1	-2	+ 2	0
Cutler 71+	10-12	10-25		10-4	11-7	10-9	9-28	10-16	9-23	10-12
Kent	+4.8	+9		+ 6	+7	+1	+3	-1	+11	+2
Bonus	-1.6	0		- 1	- 5	-2	- 9	-1	+ 6	-1
C1483	+2.4	+9		+ 1	-1	+2	+2	-1	+ 7	0
L66-1359	-4.0	-6		- 2	-3	-3	-9	-2	- 5	-2
L66L-144	-3.1	0		- 3	-4	-2	-8	-1	- 4	-3
Wye	+1.8	+2		+ 2	+3	0	+4	0	+ 1	+2
Md66-1258	+1.6	+9		+ 2	+1	-1	0	-2	+ 3	+1
Calland(III)		-6	∞ ∞			-3				- 5
Hill(V)		as as		+14						
Date Pltd.	6-11	6-10	6-2	6-2	7-13	5-24	5-26	6-26	5-25	6-25
†Days to mat.	123	137	ac ec	124	117	138	125	112	121	109
		********			, ,					
	9 Tests	S		LODGING	(score)					
Cutler	2.1	2.8	2.5	2.5	2	2	1.7	2	2.1	1
Cutler 71	2.3	2.8	2.8	2.5	2	3	1.8	2	2.2	2
Kent	1.8	2.5	2.9	2.0	1	2	1.7	1	2.1	1
Bonus	1.9	3.0	2.9	2.4	1	2	1.7	1	1.8	1
C1483	1.9	2.0	2.4	2.3	1	3	1.7	1	2.1	2
L66-1359	2.0	2.8	2.9	2.8	1	3	1.7	1	2.2	1
L66L-144	1.9	3.2	3.3	2.8	1	2	1.2	1	2.0	1
Wye	2.1	3.0	3.5	2.6	1	2	1.3	2	2.2	1
Md66-1258	2.0	3.0	2.8	2.4	1	2	1.7	2	2.4	1
	9 Tests	S		HEIGHT (inches)					
Cutlon							20	20	21	20
Cutler	35 38	42 46	37 39	37 42	31 33	41 45	32 36	30 34	31 33	32 33
Cutler 71 Kent	38 36	43	40	38	33	45 41	38	29	33	32
	36 37	43 46	37	42	32	41 47	35 35	29	32	32
Bonus C1483	40	48	42	42 45	32 35	47	35 37	30	36	39
L66-1359	34	40	36	36	30	42	32	27	31	30
L66L-144	34	41	36	37	30	42	29	28	31	31
Wye	30	40	31	33	26	38	27	23	26	25
Md66-1258	35	42	40	38	31	40	35	30	32	30

B = after barley
* Not included in the mean

Cen-	Ohio		Indiana	
tral	Col-	Lafay-	Worth-	Evans-
Mean	umbus	ette	ington	ville
17 Tests	MATURIT	Y (rela	tive dat	te)
+0.4	- ^2	+1	0	- 1
9-22	10-20	9-30	9-25	9-26
+5.1	0	+7	+ 2	+ 4
-2.0	0	0	- 1	- 7
+4.6	+ 4	+5	+ 2	+ 2
-3.0	- 1	-2	- 5	- 4
-3.4	- 4	-2	- 6	- 5
+0.6	+ 4	-2	0	0
+1.9	+ 6	+1	0	0
	-10	-8	-12	-13
5-18	5-18	5-18	5-21	5-22
127	155	135	127	127
20 Tests	LODGING			2.1
1.9	2.0	2.8	2.8	2.1
2.2 1.9	2.0 1.0	3.1 2.9	3.6 2.6	2.6 2.8
2.2	1.0	3.0	3.3	2.6
2.1	2.0	3.0	3.1	1.9
1.9	1.2	3.0	2.5	2.1
1.8	1.3	3.1	2.9	1.5
1.9	1.4	3.3	2.4	1.6
1.8	2.2	3.0	2.9	1.8
19 Tests	HEIGHT	(inche	s)	
44	33	50	45	44
45	35	51	48	48
43	34	51	46	44
47	34	52	49	51
50	37	55	50	54
42	36	50	45	45
42	34	51	46	44
37	31	44	40	39
43	33	52	46	43

Ку。			Illino	is	
Hend-	Ur-	Gir-	Edge-	Belle-	Eldo-
erson	bana	ard	wood	ville	rado
	MATURI	TY (re	lative	date)	
*	+ 2	-1	+1	+2	+ 1
	10-3	9-20	9-25	9-18	9-16
	+ 5	+2	+5	+6	+ 7
	0	-3	0	-3	- 3
	+ 5	+5	+6	+4	+ 4
	- 3	-5	- 5	- 5	- 6
	- 4	-7	-4	- 5	- 6
	0	-2	-1	0	+ 2
	+ 1	-1	+2	+4	+ 1
	- 5	-9	-8	-5	- 6
	+23				+20
6-7	5-15	5-16	6-2	5-14	5-19
	141	127	115	127	120
	L	ODGING	(scor	e)	
2.3	1.6	1,9	2.1	1.4	1.6
2.2	2.1	3.2	3.5	1.4	1.8
1.8	1.9	1.9	2.3	1.6	1.4
1.7	2.5	3.4	3.1	1.5	1.6
2.5	1.7	3.2	2.6	1.5	1.8
1.2	2.2	2.3	2.2	1.5	2.1
1.2	2.2	1.8	2.3	1.4	1.8
1.2	2.9	1.6	1.8	1.3	1.6
2.0	1.7	1.6	2.2	1.3	1.3

HEIGHT (inches)

Carbondale Stuart tumwa	Ill.	Ior	wa		Missour	ri	Neb.			Kansas		
Stuart tumwa umbia Vernon ville T hattan hattan tan T tawa umbus	Carb-		0t-	Col-				Power			Ot-	Colm
MATURITY (relative date) 9-18 9-23 9-21 9-15 10-2 9-23 9-15 9-26 9-17 9-12 17	ondale	Stuart	tumwa			ville I						
9-18 9-23 9-21 9-15 10-2 9-23 9-15 9-26 9-17 9-12 +7 +7 +7 +7 +7 +3 +5 +6 +4 +4 +4 +3 +6 +4 +4 +5 +4 +2 +8 +3 +6 +4 +5 +4 +2 +8 +3 +6 +4 +5 +4 +2 +8 +3 +6 +4 +5 +4 +2 +8 +3 +6 +4 +5 +4 +2 +8 +3 +6 +4 +5 +4 +2 +8 +3 +6 +4 +5 +4 +2 +8 +3 +6 +4 +5 +4 +2 +8 +3 +6 +4 +5 +4 +2 +8 +3 +6 +4 +5 +4 +2 +8 +3 +6 +4 +5 +4 +2 +8 +3 +4 +5 +4 +2 +8 +3 +4 +5 +4 +2 +8 +3 +4 +5 +4 +2 +8 +3 +4 +5 +4 +2 +8 +3 +4 +5 +4 +4 +5 +4 +4 +5 +4 +4 +2 +8 +3 +4 +4 +5 +4 +4 +5 +4 +4 +2 +8 +3 +4 +4 +5 +4 +4 +5 +4 +4 +5 +4 +4 +2 +8 +3 +4 +4 +4 +5 +4 +4 +5 +4 +4 +2 +8 +3 +4 +4 +4 +4 +4 +4 +4 +4 +4 +4 +4 +4 +4									nactan	tui i	Lawa	unib us
0	1.2		30		MATU		ative	date)				
+7					•	^o	0	- 1	+ 1	0	-1	0
-3 -1 +3 -8 -1 -5 -2 -4 -1 -3 -3 -3 +1 +6 +9 -2 +6 +4 +5 +4 +5 +4 +2 +8 -7 -3 -3 -3 -8 -2 +1 -1 -2 -1 +2 +8 -6 -3 -4 -8 -3 +1 -1 -2 0 0 0 +2 -1 +5 +2 -1 +3 -1 +4 +2 0 0 +3 +3 +3 +5 +1 -1 +3 +2 +2 +2 +6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -10 -4 -11 -14 -12 -6 +12 -1 +12 -14 -12 -6 +12 -14 -14 -12 -6 +12 -14 -14 -12 -6 +12 -14 -14 -12 -6 +12 -14 -14 -12 -6 +12 -14 -14 -12 -6 +12 -14 -14 -12 -6 +12 -14 -14 -12 -6 +12 -14 -14 -12 -6 +12 -14 -14 -12 -6 +12 -14 -14 -12 -6 +12 -14 -14 -12 -6 +12 -14 -14 -12 -6 +12 -14 -14 -12 -6 +12 -14 -14 -12 -6 +12 -14 -14 -12 -6 +12 -14 -14 -12 -14 -12 -14 -14 -12 -14 -14 -12 -14 -14 -12 -14 -14 -12 -14 -14 -14 -12 -14 -14 -14 -14 -14 -14 -14 -14 -14 -14						9-15	10-2	9-23	9-15	9-26	9-17	9-12
+1						+ 3	+5	+ 6	+ 4	+ 4	+3	+6
-77						~ 8	-1	- 5	- 2	- 4	-1	-3
-6	+1	+6		+9		- 2	+6	+ 4	+ 5	+ 4	+2	+8
-6				~ 3		8	-2	+ 1	- 1	- 2	-1	+2
+3 +3 +5 +1 -1 +3 +2 +2 +2 +6 -6		-3		-4		- 8		+ 1	- 1		0	
-6				+5		+ 2	-1	+ 3	- 1	+ 4	+2	0
+19 +12 5-18	+3	+3		+5		+ 1	-1	+ 3	+ 2	+ 2		+6
+19 +12 5-18	-6			-6			-4	-11	-14	-12	-6	
LODGING (score) LODGING (s						+19					Ü	
LODGING (score) LODGING (s	5-18	5-14	5-16	5-19	5-11	5-20	5-26	5-17	5-6	5-3	5-7	6-7
2 1.4 2.4 2.4 3.2 2.8 1.3 1 1 1.3 1.5 1.4 2 1.5 2.9 2.2 3.1 2.8 1.5 1 1 1.3 2.1 1.5 2 1.4 2.4 3.1 2.9 3.2 1.2 1 1 1.3 1.6 1.2 2 1.6 2.6 2.5 3.4 2.0 1.2 1 1 1.5 2.3 1.2 2 1.3 2.4 2.7 2.6 2.3 1.9 1 1 1.8 1.9 1.3 1 1.4 3.6 2.0 2.7 3.3 1.2 1 1 1.5 1.6 1.3 1 1.4 3.2 2.2 3.1 3.2 1.1 1 1.5 1.6 1.3 1 1.5 3.1 2.9 3.8 2.3 1.3 1 1 1.5 1.6 1.3 1 1.5 3.1 2.9 3.8 2.3 1.3 1 1 1.6 2.6 1.4 2 1.4 2.6 2.2 3.2 3.2 3.2 1.2 1 1 1.3 1.4 1.2 HEIGHT (inches) **HEIGHT (inches)** **HEIGHT	123	132										
2 1.4 2.4 2.4 3.2 2.8 1.3 1 1 1.3 1.5 1.4 2 1.5 2.9 2.2 3.1 2.8 1.5 1 1 1.3 2.1 1.5 2 1.4 2.4 3.1 2.9 3.2 1.2 1 1 1.3 1.6 1.2 2 1.6 2.6 2.5 3.4 2.0 1.2 1 1 1.5 2.3 1.2 2 1.3 2.4 2.7 2.6 2.3 1.9 1 1 1.8 1.9 1.3 1 1.4 3.6 2.0 2.7 3.3 1.2 1 1 1.5 1.6 1.3 1 1.4 3.2 2.2 3.1 3.2 1.1 1 1.5 1.6 1.3 1 1.5 3.1 2.9 3.8 2.3 1.3 1 1 1.5 1.6 1.3 1 1.5 3.1 2.9 3.8 2.3 1.3 1 1 1.6 2.6 1.4 2 1.4 2.6 2.2 3.2 3.2 3.2 1.2 1 1 1.3 1.4 1.2 HEIGHT (inches) **HEIGHT (inches)** **HEIGHT						LODGING	,	`				
2 1.4 2.4 2.4 3.2 2.8 1.3 1 1 1.3 1.5 1.4 2 1.5 2.9 2.2 3.1 2.8 1.5 1 1 1 1.3 2.1 1.5 2.1 1.5 2 1.4 2.4 3.1 2.9 3.2 1.2 1 1 1 1.3 1.6 1.2 2 1.6 2.6 2.5 3.4 2.0 1.2 1 1 1 1.5 2.3 1.2 2 1.3 2.4 2.7 2.6 2.3 1.9 1 1 1.8 1.9 1.3 1 1.4 3.6 2.0 2.7 3.3 1.2 1 1 1.5 1.6 1.3 1 1.4 3.2 2.2 3.1 3.2 1.1 1 1.5 1.6 1.3 1 1.4 3.2 2.2 3.1 3.2 1.1 1 1 1.5 1.6 1.3 1 1.5 3.1 2.9 3.8 2.3 1.3 1 1 1.5 1.6 1.3 1 1.5 3.1 2.9 3.8 2.3 1.3 1 1 1.6 2.6 1.4 2 1.4 2.6 2.2 3.2 3.2 3.2 1.2 1 1 1.3 1.4 1.2							(score	<u>.)</u>				
2			2.4	2.4	3.2	2.8	1.3	1	1	1.3	1.5	1.4
2 1.6 2.6 2.5 3.4 2.0 1.2 1 1 1.5 2.3 1.2 2 1.3 2.4 2.7 2.6 2.3 1.9 1 1 1.8 1.9 1.3 1 1.4 3.6 2.0 2.7 3.3 1.2 1 1 1.5 1.6 1.3 1 1.4 3.2 2.2 3.1 3.2 1.1 1 1.5 1.6 1.3 1 1.5 3.1 2.9 3.8 2.3 1.3 1 1 1.6 2.6 1.4 2 1.4 2.6 2.2 3.2 3.2 3.2 1.2 1 1 1.3 1.4 1.2 1.3 1.4 1.2 1 1.3 1.4 1.2 1 1.3 1.4 1.2 1 1.3 1.4 1.2 1 1.3 1.4 1.2 1 1 1.3 1.4 1.2 1 1 1.3 1.4 1.2 1 1 1.3 1.4 1.2 1 1 1 1.3 1.4 1.2 1 1 1 1.3 1.4 1.2 1 1 1 1.3 1.4 1.2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1								1	1	1.3	2.1	1.5
2 1.3 2.4 2.7 2.6 2.3 1.9 1 1 1.8 1.9 1.3 1 1.4 3.6 2.0 2.7 3.3 1.2 1 1 1.5 1.6 1.3 1 1.4 3.2 2.2 3.1 3.2 1.1 1 1.5 1.6 1.3 1 1.5 3.1 2.9 3.8 2.3 1.3 1 1 1.6 2.6 1.4 2 1.4 2.6 2.2 3.2 3.2 1.2 1 1 1.3 1.4 1.2 HEIGHT (inches) ** ** ** ** ** ** ** ** **								1	1	1.3	1.6	
1 1.4 3.6 2.0 2.7 3.3 1.2 1 1 1.5 1.6 1.3 1 1.4 3.2 2.2 3.1 3.2 1.1 1 1.5 1.6 1.3 1 1.5 3.1 2.9 3.8 2.3 1.3 1 1 1.6 2.6 1.4 2 1.4 2.6 2.2 3.2 3.2 1.2 1 1 1.3 1.4 1.2 HEIGHT (inches)												
1 1.4 3.2 2.2 3.1 3.2 1.1 1 1 1.5 1.6 1.3 1 1.5 3.1 2.9 3.8 2.3 1.3 1 1 1.6 2.6 1.4 2 1.4 2.6 2.2 3.2 3.2 1.2 1 1 1 1.3 1.4 1.2	2	1.3	2.4	2.7	2.6	2.3	1.9	1	1	1.8	1.9	1.3
1 1.4 3.2 2.2 3.1 3.2 1.1 1 1 1.5 1.6 1.3 1 1.5 3.1 2.9 3.8 2.3 1.3 1 1 1.6 2.6 1.4 2 1.4 2.6 2.2 3.2 3.2 1.2 1 1 1.3 1.4 1.2 HEIGHT (inches)	1	1.4	3.6	2.0	2.7	3.3	1.2	1	1	1.5	1.6	1.3
1 1.5 3.1 2.9 3.8 2.3 1.3 1 1 1.6 2.6 1.4 2.6 2.2 3.2 3.2 1.2 1 1 1 1.3 1.4 1.2 									1			
HEIGHT (inches) HEIGHT (inches) 38 50 42 41 42 41 42 41 42 45 45 45 39 39 52 45 40 42 50 30 44 46 46 42 41 48 42 38 38 45 29 39 44 43 38 38 55 44 44 38 52 33 45 52 49 36 47 54 47 45 47 55 34 48 56 51 39 38 49 41 39 40 45 27 40 43 45 35 36 48 42 39 39 43 28 40 44 46 36 32 42 33 36 33 40 25 38 39 39 35												
38 50 42 41 42 47 28 43 45 45 39 39 52 45 40 42 50 30 44 46 46 42 41 48 42 38 38 45 29 39 44 43 38 38 55 44 44 38 52 33 45 52 49 36 47 54 47 45 47 55 34 48 56 51 39 38 49 41 39 40 45 27 40 43 45 35 36 48 42 39 39 43 28 40 44 46 36 32 42 33 36 33 40 25 38 39 39 35	2	1.4	2.6					1	1	1.3	1.4	1.2
38 50 42 41 42 47 28 43 45 45 39 39 52 45 40 42 50 30 44 46 46 42 41 48 42 38 38 45 29 39 44 43 38 38 55 44 44 38 52 33 45 52 49 36 47 54 47 45 47 55 34 48 56 51 39 38 49 41 39 40 45 27 40 43 45 35 36 48 42 39 39 43 28 40 44 46 36 32 42 33 36 33 40 25 38 39 39 35						UPICUT (inches	`				
39 52 45 40 42 50 30 44 46 46 42 41 48 42 38 38 45 29 39 44 43 38 38 55 44 44 38 52 33 45 52 49 36 47 54 47 45 47 55 34 48 56 51 39 38 49 41 39 40 45 27 40 43 45 35 36 48 42 39 39 43 28 40 44 46 36 32 42 33 36 33 40 25 38 39 39 35								_				
41 48 42 38 38 45 29 39 44 43 38 38 55 44 44 38 52 33 45 52 49 36 47 54 47 45 47 55 34 48 56 51 39 38 49 41 39 40 45 27 40 43 45 35 36 48 42 39 39 43 28 40 44 46 36 32 42 33 36 33 40 25 38 39 39 35												
38 55 44 44 38 52 33 45 52 49 36 47 54 47 45 47 55 34 48 56 51 39 38 49 41 39 40 45 27 40 43 45 35 36 48 42 39 39 43 28 40 44 46 36 32 42 33 36 33 40 25 38 39 39 35												
47 54 47 45 47 55 34 48 56 51 39 38 49 41 39 40 45 27 40 43 45 35 36 48 42 39 39 43 28 40 44 46 36 32 42 33 36 33 40 25 38 39 39 35												
38 49 41 39 40 45 27 40 43 45 35 36 48 42 39 39 43 28 40 44 46 36 32 42 33 36 33 40 25 38 39 39 35												
36	47		54	47	45	47	55	34	48	56	51	39
36 48 42 39 39 43 28 40 44 46 36 32 42 33 36 33 40 25 38 39 39 35	38		49	41	39							
			48	42								
40 48 42 40 43 47 30 40 46 46 37	32		42									
	40		48	42	40	43	47	30	40	46	46	37

	East	Penn.	N.J.	Del.			Mary:				
Strain	Coast Mean	Landis- ville	Center- ton	George- town I	Taney- town B	Clarks- ville	Queens- town	Queens- town B	Link- wood	Quan ico	t- B
	9 Test	S		SEED QU	ALITY (s	score)					
Cutler Cutler 71	3.0 2.8	3.7 3.7	1.9 2.1	3.8 3.0	2.0 2.5	3 2	3 3	2 2	3 3	5 4	
Kent Bonus	2.6 2.5	3.3 3.0	2.0 2.3	3.3 2.8	1.7 1.5	3 2	3 3	2 2	2	3	
C1483	2.3	2.0	2.5	2.8	1.4	2	3	2	2	3	
L66-1359 L66L-144	2.5 2.5	3.7 4.3	2.3 2.3	3.0 2.6	1.3	2	3	2	2 2	3	
Wye Md66-1258	2.5 2.8	3.0 3.0	2.3 2.0	2.3 3.1	1.8 1.7	2 2	3 3	2 2	2 3	4 5	
	9 Tests	S		SEED	SIZE (g/	100)					
Cutler Cutler 71 Kent Bonus C1483	20.6 20.5 19.7 18.8 18.2	22.5 23.8 20.8 19.9 18.3	23 23 22 20 19	21.2 22.5 20.9 19.8 17.4	18.4 17.6 16.8 18.4 15.6	18.2 18.3 18.6 17.1 15.8	21.1 20.5 21.2 18.2 21.0	19.2 19.1 17.2 19.3 18.4	19.2 18.9 18.7 17.1 17.4	22.4 21.0 21.4 19.1 20.9)
L66-1359 L66L-144 Wye Md66-1258	20.3 20.2 17.1 20.2	20.5 21.0 18.0 21.9	23 24 18 23	22.0 21.4 18.5 20.4	16.8 17.2 15.6 18.2	19.0 17.9 16.2 17.3	21.7 21.7 18.6 20.8	18.7 20.0 16.2 19.3	19.3 19.5 16.3 18.9	21.7 19.4 16.5 22.2	;
	5 Tests	5		PR	OTEIN (<u>})</u>					
Cutler Cutler 71 Kent Bonus C1483	41.2 41.0 40.6 42.0 41.0		40.4 41.5 40.8 42.0 40.8	43.2 42.9 42.4 43.5 43.2		42.3 41.3 40.6 43.7 41.6	41.2 40.4 40.5 41.1 40.6		39.0 39.1 38.7 39.5 38.9		
L66-1359 L66L-144 Wye Md66-1258	39.7		39.8 40.0 40.6 40.4	41.0 39.5 40.4 42.1	······································	41.1 40.0 39.8 40.5	39.2 38.8 40.4 40.4		36.6 37.2 37.5 39.0		
	5 Test	S			OIL (%)						
Cutler Cutler 71 Kent Bonus C1483	21.3 21.6 21.7 21.9 22.0		21.1 21.0 21.4 21.3 21.5	20.9 21.8 20.9 21.2 21.7		20.2 20.7 21.4 21.4 21.4	21.5 21.7 21.8 22.5 22.0		22.8 22.8 22.8 23.0 23.3		
L66-1359 L66L-144 Wye Md66-1258	22.8 22.9 23.0 21.4		22.9 22.6 22.0 21.1	22.1 22.3 22.6 20.7		22.3 22.2 23.2 21.7	22.9 23.3 22.7 21.4		23.8 24.0 24.4 22.0		

B = after barley
* Not included in the mean

	Cen-	Ohio		Indiana	
	tral	Col-	Lafay		Evans-
	Mean	umbus	ette	ington	ville
20	Tests	SEED QUA	ALITY	(score)	
	1.8	3.5	1.5	1.5	1.5
	2.0	3.5	2.0	1.5	2.0
	2.0	3.0	1.5	1.5	2.0
	1.7	2.5	1.5	1.5	1.5
	2.2	3.5	2.5	1.5	2.5
	1.9	3.3	2.0	1.5	1.5
	1.9	3.0	2.0	1.5	1.5
	1.8	2.5	1.5	1.0	1.5
	1.8	3.3	1.5	1.0	1.5
1'	7 Tests	SEED S	IZE (g	/100)	
	16.8	19.5	19.6	18.2	18.6
	16.4	20.9	18.9	17.1	18.5
	16.4	19.6	20.2	17.6	18.2
	15.7	19.3	18.7	16.9	18.2
	15.8	21.0	18.6	15.4	17.7
	16.4	18.9	20.2	17.8	18.4
	16.3	19.9	20.3	17.5	17.8
	15.2	19.0	18.2	16.4	16.6
	16.3	19.2	18.9	17.7	18.1
12	2 Tests	PROT	rein (%)	
	40.7	42.9			40.4
	41.0	42.9			40.8
	40.7	44.3			41.0
	42.4	46.2			41.3
	41.5	44.9			41.3
	40.3	42.5			39.5
	39.4	41.2			39.1
	39.7	40.9			39.7
	40.6	42.8			40.7
12	2 Tests	01	[L (%)	•	
	22.0	20.7			22.8
	22.0	20.7			22.5
	22.2	21.0			22.3
	22.1	20.0			22.9
	21.8	19.3			22.3
	23.3	22.9			23.0
	23.4	22.2			24.3
	23.4	22.6			23.6
	22.1	21.2			22.0
_					

1:4:-

Ку。			Illino	is	
Hend-	Ur-	Gir-	Edge-	Belle-	Eldo-
erson	bana	ard	wood	ville	rado
	SEED	QUALI	TY (sc	ore)	
2.0	1.8	2.2	2.5	2.3	2.8
3.0	1.8	2.5	3.2	2.5	2.8
3.5	2.0	2.3	2.8	2.3	2.5
2.0	2.0	1.8	2.5	2.0	2.3
4.0	2.3	1.7	2.7	2.5	2.6
2.0	2.2	2.7	3.0	2.2	2.3
1.0	2.3	2.3	2.8	2.0	2.7
2.0	2.5	2.0	2.4	2.7	2.7
3.0	1.7	2.3	2.8	2.3	2.8
	SEE	D SIZE	(g/10	0)	
18.7	18.4	16.5	17.8	17.4	18.6
18.7	18.0	16.2	16.4	17.1	18.3
19.8	18,3			16.4	18.2
16.9 19.2	17.1 15.8	14.9 16.5	16.2 16.2	15.7 16.6	17.2 16.9
16.5	20.1	16.0	15.3	16.4	16.8
17.4 17.2	18.1 17.8	15.6 15.8	16.2 15.4	16.3 15.3	16.8 16.2
18.0	18.0		16.8	17.0	18.1
		DDOTET	N (%)		
		PROTEI	N (8)		
39.9	40.6	41.3			41.7
40.5 41.3	40.4 39.5	41.2 39.3			42.2 41.5
42,1	42.6				43.3
42.4	41.0	40.3			42.4
38.9					40.4
38.6	41.8 40.6	40.9 39.7			39.9
39.0	40.2	40.9			40.0
40.8	40.3	40.9			41.2
				· · · · · · · · · · · · · · · · · · ·	
		OIL	(%)		
22.4	21.9	21.5			22.8
22.9	21.9	21.7			21.9
21.6 22.9	22.4 21.2	22.5			22.9
21.9	20.4	21.9 22.2			22.4 22.2
24.5	22.0				23.8
24.1	22.4	22.4 22.4			24.7
23.5	22.9	23.4			23.9
21.4	21.5	21.9			24.0

Ill.	Io			Missou	ri	Neb.	•		Kansas		
Carb-		0t-	Col-	Mt.	Portage-	Mead	Pow-	Man -	Manhat-	0t-	Col-
ndale	Stuart	tumwa	umbia	Vernon	ville I	I		hattan			umbu
				SE	ED QUALITY	(score					
1	1	1.3	2.4	3.0	*					, ,	
ī	ī	1.0	2.5	3.3	3.0	1.3	2.1	1.6	1.4	1.5	
2	ī	1.0	2.2		3.2	1.2	2.0	1.5	1.5	1.6	
ī	ī	1.0	2.2	3.5 2.7	3.5	1,4	2.0	1.6	1.4	1.8	
2	ī	1.5	3.0	3.5	3.2 2.3	1.3	2.2	1.2	1.6	1.5	
1						1.3	2.4	1.6	1.6	1.7	
2	1	1.0	2.5	3.6	3.2	1.2	1.9	1.6	1.7	1.5	1.9
1	1	1.0	2.6	3.0	2.8	1.1	1.9	1.5	1.7	1.6	1.8
ì	1	1.0	2.5	3.0	3.2	1.0	2.0	1.5	1.4	1.8	
		1.3	2.5	2.5	3.0	1.0	2.0	1.5	1.4	1.7	1.8
				SI	EED SIZE (g/100)					
20.5		19.0			16.3	15.0	13.0	9.5	17.9	14.1	12.0
19.4		17.8			15.7	15.0	12.8	9.2	18.0	14.5	
18.6		19.6			16.0	12.9	13.6	9.8	16.7	12.9	
18.6		17.2			16.3	14.8	12.8	8.9	17.1	14.3	
16.9		17.6			15.3	13.5	15.4	9.7	16.3		13.8
19.5		18.6									
18.6					18.0	17.2	12.5	9.4	18.1	15.2	
		18.3			17.3	16.6	12.4	9.9	18.0	15.4	
16.8 17.0		18.0 18.8			14.7 16.7	15.1 14.8	11.5 13.3	8.3 9.6	16.6 17.8	13.3	12.8
		10.0			10.7	14.0	13.3	9.0	1/.0	14.4	12.0
					PROTEIN	(%)					
		39.5	40.5		42.5	37.8	41.4		39.7		
		40.3	41.0		42.2	38.8	41.5		40.0		
		39.5	41.3		41.3	38.9	41.4		38.9		
		38.0	43.6		43.2	41.7	42.8		41.0		
		41.3	42.7		41.2	40.4	40.8		39.7		
		38.6	40.8		40.2	38.6	42.0		39.4		
		36.6	40.1		39.3	37.7	41.6		38.6		
			39.5		38.7	38.6	39.7		37.6		
		40.9	39.5		41.8	37.7	41.5		39.3		
			···		OIL (%)		• • • • • • •			
		22.8	21.2		21.2	21.7	22.9		22.5		
		22.0	22.3		21.7	21.4			22.6		
		23.3	21.8		21.7	21.1	22.4		23.9		
		24.1	20.7		21.6	21.2	23.1		23.6		
		21.9	21.6		22.0	21.3	22.2		23.7		
		23.8	22.8		23.5	22.9	22.9		24.5		
		25.0	22.8		23.8	22.9	22.4		24.0		
		22.3	24.0		22.6	23.2			24.4		
		22.3	22.0		21.5	22.1	21.6		23.6		

Strain		Parentage	Generation Composited				
1. 2. 3.	Clark 63 Cutler 71 Kent	(Clark ⁵ x L49-4091) x (Clark ⁶ x Blackhawk)	13 F ₃ lines				
4.	L69-5338						
5.	L69-5343	TT TT	F ₂				
6.	L69-5366	II.	F ₃				
7.	Md66-1024	2nd cycle intermates	F ₆				
8.	SS65-5704	Clark x (Scott 2 x Peking)	F ₃ F3 F6 F5 F5				
9.	UD66-9222	Bethel x Kent	F 5				

This test was grown at 11 locations this year. Evansville was omitted from the regional mean because UD66-9222 yielded so very poorly there because of heavy infection by Phytophthora rot.

The three L strains are Clark 63 backcross line with yellow hilum selected for non-mottling from Hawkeye, presumably the same gene <u>Im</u> as that reported for Merit. These lines in Illinois showed distinctly less mottling than Clark 63. Two of the three, L69-5338 and 5366 yielded well relative to Clark 63 but were slightly later, and perhaps taller and more lodging susceptible. These differences cannot be due to the Rps gene since it is also present in the check variety Clark 63.

Md66-1024 was almost as late as Kent and showed excellent lodging resistance but averaged 2 bushels below in yield. The remaining 2 strains, SS65-5704 and UD66-9222, were $1\frac{1}{2}$ and 3 days later than Kent but averaged very low in yield, 9 to 10 bushels below Kent. SS65-5704 may have a local adaptation at Portageville where it was selected and where it yielded relatively well.

Regional Summary

0.			Matu-	Lodg-		Seed	Seed	Seed Composition		
Strain	Yield	Rank	rity	ing	Height	Quality	Size	Protein	011	
No. of Tests	10	10	10	10	10	10	9	6	6	
Clark 63	43.4	6	-1.3	2.4	41	2.3	15.6	39.9	22.5	
Cutler 71	46.4	2	9-24	2.1	43	2.4	17.7	40.6	22.6	
Kent	47.7	1	+4.9	1.9	41	2.3	17.2	40.5	22.7	
L69-5338	45.2	4	+0.9	2.5	43	2.5	15.8	39.6	22.1	
L69-5343	41.6	7	+1.6	2.5	44	2.5	15.7	39.9	22.5	
L69-5366	44.2	5	+0.3	2.7	42	2.4	16.3	39.7	22.3	
Md66-1024	45.5	3	+3.8	1.9	42	2.5	16.0	39.5	23.3	
SS65-5704	38.7	8	+6.5	3.5	44	2.2	14.6	39.3	21.5	
UD66-9222	37.8	9	+8.0	2.4	54	2.3	16.9	41.8	22.0	

Disease Data

	E	B BP		BS BSR			DM	FE ₂		PR	_PS_	PSB		
	Urb.	Ames Iowa		b.	Laf. Ind.			Bell. Ill.				Ston. Miss.		Geo. Del.
	n1	n	a2	al	n	n %	n %	n	а .	а	а	n	n	n
Clark 63	2	2	R	1	3	52	100	4.0	5	R	R	1	4.0	4.2
Cutler 71	2	1	S	3	3	25	100	3.0	1	R	R	1	3.8	3.5
Kent	1	2	S	3	3	25	100	2.0	1	S	S	2	4.2	2.5
L69-5338	3	2	R	1	3	72	100	4.0	5	R	R	2	3.6	4.0
L69-5343	3	1	R	2	3	83	90	4.0	5	R	R	1	4.1	4.2
L69-5366	2	1	R	1	2	60	90	4.0	5	R	R	1	3.6	3.8
Md66-1024	1	2	S	3	3	20	100	4.0	5	S	S	1	4.0	4.2
SS65-5704	2	2	R	1	3	47	100	4.0	5	S	S	2	3.2	2.0
UD66-9222	4	2	S	3	4	43	90	2.5	1	S	S	2	3.5	2.2

Descriptive and Shattering Data

			ttering				
Strain	Descri	ptive	Kansas Manhattan	Mississippi Stoneville			
	Code		2 wk.	clay	loam		
Clark 63	PTNBr	DYB1	1	1	1		
Cutler 71	PTNBr	SYB1	4	3	2.5		
Kent	PTNBr	IYB1	4	4	3.5		
L69-5338	PTNBr	DYY	2	2	1		
L69-5343	PTNBr	DYY	1	1	1		
L69-5366	PTNBr	DYBr	1	1	1		
Md66-1024	WTNTn	DYIb	3	1	1		
SS65-5704	PTSaBr	DYB1	3	3	3		
UD66-9222	PTNBr	SYB1	2	2	3		

						iana					Kans	as
C+		Del.	Maryl		Wor-	_	Illin		Misso		Man-	•
Strain	Mean	George	·Clarks ville		thing		Belle- ville			Portage	tan I	Ot-
			VIIIe					Tauo	umbra	VIIIE	Can I	Lawa
	10 Tes	sts			1971 Y	IELD (bu/a)					
Clark 63	43.4	41.5	26.6	33.4	49.5	51.1	47.0	50.0	42.6	32.3	59.5	51.1
Cutler 71	46.4	48.7	42.7	36.4	47.0	54.3	50.4	53.3	47.4	30.7	58.7	48.4
Kent	47.7	48.5	35.3	37.9	57.7	44.1	51.1	53.5	47.9	37.2	60.2	47.5
L69-5338	45.2	44.0	34.2	38.2	49.6	48.7	46.6	50.0	47.7	32.6	62.2	46.9
L69-5343	41.6	45.6	27.4	35.6	41.0	51.9	44.9	48.4	39.9	32.6	56.2	44.1
L69-5366	44.2	46.3	32.5	35.5	45.2	55.5	48.3	47.2	39.8	35.5	63.1	49.0
Md66-1024	45.5	48.6	43.4	38.9	51.6	50.2	44.2	49.3	48.6	32.6	54.0	43.9
SS65-5704	38.7	46.4	21.3	31.3	45.3	46.2	40.8	41.8	37.2	36.4	46.4	40.3
UD66-9222	37.8	45.7	25.3	34.2	42.0	15.0	41.8	44.8	39.5	31.5	36.8	36.2
C.V. (%)		6.7	12.4	10.8	8.0	8.5	4.0	7.4	13.9	8.2	6.9	9.5
L.S.D. (5%)		n.s.	9.2	4.2	8.8	9.1	4.3	8.3	n.s.	4.8	8.8	n.s.
Row Sp. (in.	.)	36	30	38	38	40	38	37	15	38	30	30
Rows/Plot		3	3	3	3	3	3	3	4	4	3	3
Reps		3	2	2	2	2	2	2	2	3	2	2
1	lO Tes	its			YIE	LD RAN	K					
			- <u>- 2</u> 2-			*						
Clark 63	6	9	7	8	4	4	4	3	5	7	4	1
Cutler 71	2	1	2	4	5	2	2	2	4	9	5	3
Kent L69-5338	1 4	3 8	3 4	3	1	8	1	1	2	1	3	4
				2	3	6	5	3	3	4	2	5
L69-5343	7	7	6,	5	9	3	6	6	6	6	2	6
L69-5366	5	5	5	6	7	1	3	7	7	3	1	2
Md66-1024	3	2	1	1	2	5	7	5	1	5	7	7
SS65 - 5704 UD66 - 9222	8 9	4 6	9 8	9	6	7	9	9	9	2	8	8
0000-9222		- 6		7	8	9	8	8	8	8	9	9
1	0 Tes			MATU	RITY (relati	ve date)				
		•				*		-				
Clark 63	-1.3	0	0	0	-1	- 7	- 5	-3	0	-1	-2	-1
Cutler 71	9-24	10-4	10-9	9-24	9-23	9-27	9-19	9-16	9-23	9-14	9-26	9-17
Kent	+4.9	+5	0	+10	+5	+3	+8	+7	+7	+4	+2	+1
L69-5338	+0.9	0	-1	+ 4	+3	0	-4	-1	+4	+2	+2	0
L69-5343	+1.6	0	-1	+ 8	+3	+1	- 3	0	+4	+2	+3	0
L69-5366	+0.3	0	0	0	+2	+1	- 3	-1	+4	+1	+1	-1
Md66-1024	+3.8	+4	+2	+ 8	+5	+4	+3	+1	+5	+2	+5	+3
SS65-5704	+6.5	+5	+1	+10	+8	+5	+9	+9	+8	+4	+8	+3
WD66-9222	+8.0	+7	-2	+10	+12	+5	+11	+10	+9	+5	+9	+9
Calland (II	(I)		-3		-10	-14	- 6	- 6	-10		-12	-6
Hill (V)		+14					J	+20	-10	+20	+12	- 6
Date Plnt.	5-21	6-2	5-24	5-25	5-21	5-22	5-14	5 - 19	5-19	5-20	5-3	5 - 7

The following notes provide information useful in interpreting strain performance at the individual test locations.

University Park, Pennsylvania. Growth throughout the season was good to excellent. All lines were slow to fill the 30-inch rows. Only 90% of the ground was covered with the Group II strains. Temperatures were below normal and rainfall was deficient in May and June. A killing frost was not received until November, much later than normal.

Cooperator: Rock Springs Research Center.

Soil Type: Duffield silt loam.

Fertilizer: 0-100-100 and 2 T. of High Magnesium Lime per Acre.

Herbicide: Alachlor 2#/A pre-emergence.

Soil Analysis: pH, 6.3; P, Medium; K, Medium; Ca, Medium+; Mg, Low.

Landisville, Pennsylvania. Temperatures were below normal in June and July, normal in August, and above normal in September and October. The 1971 total growing degree days (50°F. base) was slightly higher than normal. A killing frost did not occur until 25 days later than normal. Rainfall was one inch below normal in June and September, and five inches above normal for the period July 1 to August 31. Rainfall distribution was excellent. Plant growth was good, but seed quality problems were the greatest ever experienced at this location.

Cooperator: Southeastern Field Research Laboratory.

Soil Type: Hagerstown silt loam.

Fertilizer: None.

Herbicide: Vernolate plus trifluralin 2 + 3/4#/A preplant incorporated.

Soil Analysis: pH, 6.9; P, High; K, High; Ca, Medium; Mg, High.

Middlebush, New Jersey. The seeding was made on June 11 on Penn Silt Loam which was fairly dry. The early part of the season was generally cool. Rainfall was limiting until the last week in July and first week in August when 4.6 inches fell. Previous to July 29, there was only 3 inches of precipitation. During August, rainfall exceeded one inch per week but on August 27 and 28, 8.6 inches fell. Cool wet weather through the fall delayed harvest until November 17. Repeated wetting and drying during October resulted in quality lower than normal seed quality and excessive shattering.

Cooperator: A. Puskas and H. N. Repair.

Soil Type: Penn Silt Loam.

Fertilizer: 7.5-30-30 Broadcast.

Herbicide: Lorox 1#/A. a.i.

Adelphia, New Jersey. The seeding was made on June 8 in dry soil. Stands were good. Growth during the season was quite normal although the early season was cooler than normal. Precipitation from planting until August 26 totaled 6.9 inches with 1.25 inches July 2 and 1.6 inches August 1. On August 27 and 28, 8.3 inches of rain fell accompanied by high winds causing considerable lodging. Nearly 8 inches of rain fell during September followed by a wet, cool October. Harvest was delayed until November 12. Foliar infections of downy mildew became heavy during August and were followed by heavy infections of pod and stem blight which seriously lowered seed quality over the state. Shattering was above normal at this location and the wet fall resulted in beans germinating in the pod.

Cooperator: Soils and Crops Research Farm, E. C. Visinski, Superintendent.

Soil Type: Freehold Loam.

Fertilizer: 25-50-50 Broadcast Herbicide: Treflan, 3/4#/A. a.i. Centerton, New Jersey. The seeding was made on June 2 in soil with good moisture. The early season was cooler than normal, but growth was good. Rainfall from planting until August 11 consisted mostly of light showers totaling 6.8 inches. From August 12 through September, 14.9 inches of rain fell with 7.4 inches falling August 27 and 28. October continued cool and wet delaying harvest until November 11. Downy mildew infections were heavy on leaves during August, followed by heavier than normal infection of pod and stem blight of the grain.

Cooperator: South Jersey Research Center, J. Steinke, Research Coordinator.

Soil Type: Sassafrass Sandy Loam.

Fertilizer: 15-60-60.

Herbicide: None.

Georgetown, Delaware. Growing conditions were generally fairly good in 1971. July temperatures were near normal and rainfall was deficient during the second and third weeks. August temperatures were below normal and rainfall again deficient the second and third weeks. September temperatures were near normal and rainfall was deficient during the second week and fourth week. Plots were irrigated July 12, July 28, and September 20. About 1.5 to 2.0 inches were applied each time. The only insect present this year was a light infestation of Mexican bean beetles.

Cooperator:

Soil Type: Norfolk loamy sand.

Fertilizer: 40-40-40. Herbicide: Treflan .75#/A.

Soil Analysis: pH, 6.0; OM, 2.0%; P, High; K, Medium; Ca, 510#/A; Mg, High.

Taneytown, Maryland. Early conditions were unfavorable due to a prolonged drought from June 15 to July 20. However, after July 20 rainfall through harvest was about 10 inches above normal. Weed control was fair to good.

Cooperator: Ken Stonesifer.

Soil Type: Keysville Silty-Clay Loam.

Fertilizer: 20-80-80. Herbicide: Lorox.

Soil Analysis: pH, 6.6; P, 180; K, 224; Mg, 220.

<u>Clarksville</u>, <u>Maryland</u>. Difficulty in establishing good stands in all plots was experienced because of excessive moisture which kept the soil saturated for 2+ weeks after planting. Severe lodging resulted from heavy rains in August (20 inches). Weed control was good but some smartweed and nutgrass caused problems.

Cooperator: Tom Blaney. Soil Type: Manor Silt Loam.

Fertilizer: 20-80-80. Herbicide: Vernam.

Soil Analysis: pH, 6.0; OM, 2.5; P, 180; K, 175; Mg, 215.

Queenstown, Maryland--After Barley. After a slow start due to prolonged dry period which lasted through much of July, the growing conditions improved with ample rainfall through August and September. A late frost allowed all varieties to complete their life cycle. Heavy rain and high humidity did encourage seed disease organisms and Diaporthe and Cercospora was prevalent.

Cooperator: Lewis Smith

Soil Type: Mattapex Silt Loam.

Fertilizer: 0-60-120. Herbicide: Dyanap.

Soil Analysis: pH, 6.4; P, 190; K, 408; Mg, 164.

Quantico--After Barley. Conditions were generally satisfactory for most of the growing season. Rainfall was heavy during August and September well above average. High humidity at pod filling caused high infection rates of Diaporthe and Cercospora. Weed control was very satisfactory. Fifteen inch rows were used and the foliage had formed a complete canopy after five weeks after planting.

Cooperator: Ron Mulford.
Soil Type: Mattapex Silt Loam

Fertilizer: 40-100-100 (Barley and Soybeans)

Herbicide: Dinitro and Lasso.

Soil Analysis: pH, 5.9; OM, 2.1; P, 168; K, 176; Mg, 224.

Queenstown, Maryland. The seeding was made on May 26, 1971 in warm moist soil. Stands were good. Growth during the season was excellent. Temperature and rainfall were normal through September. October had an excessive amount of rainfall and the temperature was above normal which caused beans to germinate in the pods.

Cooperator: University of Maryland Farm.

Soil Type: Loam.

Fertilizer: 400#/A. 0-15-30.

Linkwood, Maryland. The seeding was made on May 25, 1971 in warm moist soil. Stands were good. Growth during the season was excellent. Temperature and rainfall were normal except around harvest. October had more than the normal amount of rainfall and the temperature was relatively high which caused beans to germinate in the pod during the last half of the month. A rather severe infestation of thrips was discovered in July and brought under control before the damage became excessive.

Cooperator: Dr. James Johnson. Soil Type: Sassafras silt loam. Fertilizer: 300#/A. 0-15-30. Soil Analysis: pH, 6.0.

Ottawa, Ontario. Tests were planted on May 21, a few days later than normal. Germination and emergence were satisfactory. Plots were flooded for 36 hours when plants were 4-6 inches in height. Effect on growth was apparent for several weeks thereafter. Growing conditions in late June, July, and August were near normal but in September and October rainfall was above normal. Periods of cool wet weather distorted maturity relationships to the point where observations after September 30 were meaningless. Plots could not be threshed directly in the field. Material had to be dried first in burlap bags and then threshed.

Cooperator: L. S. Donovan.
Soil Type: Grenville loam.
Fertilizer: 400#/A. 5-20-20.
Herbicide: Lasso and Linuron.

Soil Analysis: pH, 6.0.

Kemptville, Ontario. Rainfall at Kemptville was 4 inches below normal in the growing season of 1971. This accounts in part for the lower yields. April through August was cooler than normal. The first fall frost was about 4 weeks later than normal. Other than the previous deviations we had a good crop year at Kemptville.

Cooperator: Kemptville College of Agricultural Technology.

Soil Type: Grenville sandy loam.

Fertilizer: 700 lb. of 0-15-30 in fall 1970; 100 lb. of Nitrogen spring 1971.

Herbicide: 1/2 lb. Treflan ppi; 1 lb. Linuron pp.

Soil Analysis: pH, 6.6; OM, Medium; P, H+; K, H+; Mg, H-.

Elora, Ontario. Soybeans were planted May 19. Precipitation was excessive with about 5 inches in each of June, July, and August. Temperatures were near normal. Flowering occurred about one week earlier than normal and maturity was also earlier than normal. No irrigation was applied. Lodging was much more severe than normal.

Cooperator: Crop Science Department, University of Guelph.

Soil Type: London silty clay loam.

Fertilizer: 400#/A. 5-20-20 fall applied plus 17 T/A cattle manure. Herbicide: 0.5#.A (active) Treflan ppi + 0.5#/A (active) Lorox preemerge. Soil Analysis: pH, 7.6; OM, Medium; P, M; K, Hi minus (H-); Ca, H; Mg, H.

Ridgetown, Ontario. Emergence was rapid and uniform. Dry conditions during June and July resulted in below average plant height. Above normal rainfall was recorded in August and September. Temperatures were near normal throughout the growing season. The plots were sprayed with 8 lbs. of $MnSO_4$ on July 2 to correct for manganese deficiency. Yields were below average in the Group 0 tests and average in the Group I and II tests.

Cooperator: Ridgetown College of Agricultural Technology.

Soil Type: Brookston clay loam. Fertilizer: 900#/A of 3-11-11. Herbicide: 4#/A of Amiben.

Harrow, Ontario. Even emergence resulted in good stands. Precipitation and growth were normal during June. Severe drought during July and August seriously affected plant height in UI and II with the result that there was no lodging in these tests. UP II, which was grown in an adjacent field, did not suffer from drought to the same extent. Variability in all tests was high but yields were only slightly below average.

Cooperator: Canada Department of Agriculture Research Station.

Soil Type: Brady sandy loam. Fertilizer: 500#/A 5-10-15. Herbicide: Amiben 2 1/2#/A.

Hoytville, Ohio. Both rainfall and temperatures near normal throughout the growing season.

Cooperator:

Soil Type: Hoytville Clay.

Fertilizer: None. Herbicide: Amiben.

Soil Analysis: pH, 6.7; P, 50#/A; K, 394#/A; Ca, 6685#/A; Mg, 891#/A.

Wooster, Ohio. Both rainfall and temperatures below normal throughout the growing season.

Cooperator:

Soil Type: Wooster Silt Loam.

Fertilizer: None. Herbicide: None.

Soil Analysis: pH, 6.8; P, 75#/A; K, 250#/A; Ca, 2215#/A; Mg, 471#/A.

Columbus, Ohio. Rainfall above normal and temperatures below normal throughout the growing season.

Cooperator:

Soil Type: Miami-Brookston Silt Loam.

Fertilizer: 500#/A (0-20-20).

Herbicide: Amiben.

Soil Analysis: pH, 6.1; P, 68#/A; K, 258#/A; Ca, 3825#/A; Mg, 530#/A.

Saginaw, Michigan. Growing conditions were about normal except for below-normal rainfall during June and July. However, plants did not seem to suffer because of adequate soil moisture at planting and the very high water-holding capacity of the soil.

Cooperator: Jim Oakes, Farm Manager.

Soil Type: Charity clay.

Fertilizer: 250 lbs. of 18-46-0 + Manganese 4%.

Herbicide: Amiben.

Soil Analysis: pH, 7.7; P, 17; K, 510; Ca, 8200; Mg, 1400.

Petersburg, Michigan. Soil moisture was adequate at planting for good germination. However droughthy conditions prevailed during June, July, and early August causing slow growth, early maturity, and reduced yields, particularly to the Uniform Group I entries.

Cooperator: John Stanger

Herbicide: Amiben.

Knox, Indiana. Planting on May 26 was timely for this location. Soil conditions were good and good stands were established. There were 5.43, 6.19, and 3.46 inches of rain in June, July, and August. Temperatures exceeded 90° F on 7 days in June and 1 day in July. Consistent rainfall during the growing season resulted in good growth. Plots were harvested October 18. Yields were average for the location.

Cooperator: Frank Pulver. Soil Type: Maumee loam.

Fertilizer: 300#/A 6-15-40 plowdown; 250#/A 8-25-3 in row.

Soil Analysis: pH 6.4; P, 65#/A; K, 180#/A.

Bluffton, Indiana. Planting on May 21 was about normal for the location. Rainfall was .61, 4.30, and 2.46 inches for June, July, and August. There were 5, 1, and 1 days of temperatures above 90° in June, July, and August. Plants were shorter than average but yields were about average for the location. Plots were harvested October 20.

Cooperator: Gerald and Larry Bayless.

Soil Type: Nappanee silt loam. Fertilizer: 100#/A 9-27-5 + 4% Mn.

Herbicide: 8 1/2#/A Lasso.

Soil Analysis: pH, 6.8; P, 53#/A; K, 245#/A.

Lafayette, Indiana. Planting on May 18 was timely for this location. Soil conditions were good and emergence was rapid with good stands. There were 4.73, 6.72, and a low 1.50 inches of rainfall in June, July, and August. There were 10, 2, and 1 days of temperatures above 90°. Plant growth was good and there was very little lodging in the plots. Harvest conditions were excellent and harvest was completed October 22. Yields were about average for this location.

Cooperator: O. W. Luetkemeier.

Soil Type: Chalmers silty clay loam.

Fertilizer: 660#/A 0-26-26 broadcast; 175#/A 5-20-20 + 4% Mn in row.

Herbicide: 1 qt./A Treflan

Soil Analysis: pH, 6.0; P, 75#/A; K, 375#/A.

Greenfield, Indiana. Planting May 18 was optimum for this location. Rainfall was 3.07, 4.06, and a low 1.28 inches for June, July, and August. Temperatures exceeded 90° F on 9, 5, and 1 days in June, July, and August. Plants were somewhat shorter than average but yields of Group II varieties were about average for the location. Harvest was completed October 11.

Cooperator: Mrs. Raymond Roney.

Soil Type: Brookston-Crosby complex.

Fertilizer: 200#/A 6-24-24.

Herbicide: None.

Soil Analysis: pH, 6.2; P, 28#/A; K, 150#/A.

Worthington, Indiana. Planting May 21 was about optimum for this location. Soil conditions were excellent and emergence was rapid resulting in good stands. Rainfall for June, July, and August was 4.33, 4.90, and a low 1.56 inches. There were 8, 2, and 2 days of temperatures above 90° in June, July, and August. Growth was good and there was very little lodging at harvest, which was completed October 12. Yields were about average for the location. Plots were unusually free of disease.

Cooperator: William Hinricksen.
Soil Type: Genesee silt loam.
Fertilizer: 100# 6-24-24/A in row.

Herbicide: l qt. Treflan/A.

Soil Analysis: pH, 7.8; P, 90#/A; K, 170#/A.

Evansville, Indiana. Planting May 22 was about one week late for this location. Soil conditions were excellent and good stands resulted. Rainfall for June, July, and August were 5.06, 4.11, and 2.33 inches. There were 17, 6, and 8 days in June, July, and August with temperatures above 90°. There was very severe phytophthora rot in plots of some strains. Harvest was completed October 7. Yields were better than average for this location.

Cooperator: Bernard Wagner.

Soil Type: Montgomery silty clay loam.

Fertilizer: 600#/A 6-21-7 fall 1970, 400#/A 3-10-30 spring 1971.

Herbicide: 1.5 pt. Treflan/A.

Soil Analysis: pH, 6.2; P, 85#/A; K, 375#/A.

Henderson, Kentucky. The test was planted late (June 7) as a result of wet weather in May. The plots received 1.00 inch of rain on June 8, immediately after planting, and this resulted in some Lorox injury and reduced stands on a few of the plots. Precipitation for June was 2.76 inches above normal; July was 2.15 inches above normal; August was 1.42 inches below normal; and September was 5.74 inches above normal. Temperatures were near normal throughout the growing season.

Cooperator: Stuart Brabant.
Soil Type: Calloway silt loam.

Fertilizer: None.

Herbicide: Lasso, 2#/A + Lorox .5#/A, incorporated.

Soil Analysis: pH, 6.6; P, 100#/A; K, 150#/A.

Ashland, Wisconsin. Temperatures for the growing season were below normal for every month except June and April. Rainfall was below normal for every month of the growing season. Although the soybeans were planted about the same time as last year, the first week in June, they matured about two weeks later this year. This was probably due to the abnormally low temperatures during the growing season. We were lacking in rainfall all summer, but a wet fall and a heavy snowfall last winter built up our water reserve which helped carry us through part of the growing season. We received some timely rain in late July at the time the beans were setting pods which

helped the yield. Despite the late planting and cool temperatures, the soybean yields were good. A big factor which helped up here was that our first killing frost came more than three weeks later than normal.

Cooperator: D. A. Schlough.

Soil Type: Clay-Loam.

Fertilizer: 400#/A. 0-20-20 drilled.

Spooner, Wisconsin. The 1971 season was in general below normal for soybean produc-The nursery was planted May 28 under good soil conditions in terms of moisture and temperature. Temperatures in June were 3.4° above normal and rainfall was 1.31 inches below normal but still very ample for soybean growth at this stage. July temperatures were 4.6 below normal and rainfall .83 inches below normal with greatest shortage occurring the last 10 days of the month. Temperatures in August were 3.4° and rainfall 1 inch below normal. There was no rainfall the first 10 days and only 18 inches until the 13th when we received .75 of an inch. During the period July 21 to Aug. 11 temperatures generally ranged from 80° to the lower 90's and rainfall less than 1/2 inch. This was during the flowering season and resulted in a high percentage of aborted flowers. The field wasn't irrigated but one irrigation of 1 inch water about July 30 would have corrected this condition. The weed problem didn't appear serious but evidently was serious enough to have made considerable difference during this drought period. Both rainfall and temperatures were very near normal in September but frequency of showers and cloudiness did not force plants into maturity. The first killing frost didn't occur until October 12. There were two previous light frosts of 30° and 29° September 24 and October 7, respectively. Accurate maturity notes were impossible under these conditions.

Cooperator: C. O. Rydberg. Soil Type: Pence sand loam.

Fertilizer: None. Herbicide: None.

Durand, Wisconsin. Soybeans were planted May 28. Emergence was good and stands excellent. Early growth was excellent, however, drought during August greatly reduced yields. Temperature averaged below normal for all months save June when the mean daily temperature averaged 3° F above normal. Disease was not a problem.

Madison, Wisconsin. Soybeans were planted May 19. Emergence and stands were good. During the growing season, temperature was below normal for every month save June when it averaged 5.6° F above normal. Rainfall was 6" below normal for the period May through September. As a result, drought was a major problem and yields were about 2/3's of normal. Disease was not a factor.

Cooperator: Wisconsin Agricultural Experiment Station.

Soil Type: Miami Silt Loam. Fertilizer: 200#/A 6-24-24. Herbicide: Amiben 2#/A.

Soil Analysis: pH, 6.9; OM, 18; P, 98; K, 205.

Dekalb, Illinois. The soybean nursery was spring plowed and the seed bed was rough. Our nursery was in corn in 1970. We planted on May 14 and moisture was fair. Moisture and growth were normal thru the season until August and September when it turned dry. No serious disease or insect damage occurred. Yields were generally good on all plots.

Cooperator: R. R. Bell, Northern Illinois Research Center.

Soil Type: Flanagan silt loam.

Fertilizer: 480#/A of 0-25-25 applied in 1971.

Herbicide: l qt./A Treflan.

Soil Analysis: pH, 6.1; P1, 64; P2, 130+; K, 440.

Pontiac, Illinois. Planting was May 18 in a good seedbed. Last year's crop was corn. Stands were spotty earlier but early rains helped improve the stands. Rainfall was normal until pod fill stage when it turned dry. Seed size was small and yields were down due to dry spell in August and July. There was very little disease or insect damage this year. A large rep to rep variation resulted in high C.V.'s.

Cooperator: Donald Alltop.
Soil Type: Dodgeville silt loam.

Fertilizer: None.

Herbicide: 1 qt./A Lasso.

Soil Analysis: pH, 5.4; P₁, 45; P₂, 68; K, 420.

Urbana, Illinois. Planting was timely on May 15 in a good seedbed. June and September were warmer than average and July and August were cooler than average. July was very wet with over 10 inches of rain. The other months had a shortage of rainfall. There was general, moderate to severe bacterial blight. Harvest conditions were excellent.

Cooperator: M. G. Oldham, Illinois Agricultural Experiment Station.

Soil Type: Flanagan silt loam.

Fertilizer: None.

Herbicide: 15#/A granules, broadcast, preplant. Soil Analysis: pH, 6.7; P1, 88; P2, 130+; K, 384.

Girard, Illinois. Planting was on May 15, a little earlier than average for this location. There was drought stress all season. Early season growth was good. Downy mildew was general and slight. Bacterial blight was locally heavy in the tops. There were a few phytophthora killed plants. In mid-July this was our best looking location. There was premature killing and lack of leaf abscission at maturity in most varieties except Corsoy, caused by drouth and/or disease. Corsoy yielded 10 bushels above Beeson and 9 more than Amsoy 71. Harvest was timely.

Cooperator: Lloyd Brothers. Soil Type: Harrison silt loam.

Fertilizer: None.

Herbicide: Amiben, banded.

Soil Analysis: pH, 6.4; P₁, 170; P₂, 130+; K, 564.

Edgewood, Illinois. Planting was on June 2 in a good seedbed. Moisture was excellent until early August when it got very dry. General and slight to moderate bacterial blight, brown spot, and downy mildew. Yields were very good for this location.

Cooperator: John Wilson. Soil Type: Cisne silt loam.

Fertilizer: None.

Herbicide: Amiben banded.

Soil Analysis: pH, 615; P₁, 43; P₂, 100; K, 186.

Belleville, Illinois. Planting was on May 14 in a good seedbed with moisture to the surface. Early season growth and moisture were good. Mid to late season was very dry. There was moderate to severe brown spot and moderate downy mildew; many plants had bud blight virus or stem canker. Drought compressed Group III and Group IV maturities. A good test.

Cooperator: George Kapusta, Belleville Research Center.

Soil Type: Ebbert silt loam.

Fertilizer: None. Herbicide: Treflan

Soil Analysis: pH, 5.8; P₁, 38; P₂, 78; K, 224.

Eldorado, Illinois. Planting was on May 19 in a good seedbed. Growth and stands were very good. Moisture was adequate to slightly deficient. Bacterial blight was slight to severe, downy mildew was general and light, and there was slight bacterial pustule. Lodging was very moderate for this location. Yields were good and harvest conditions were excellent.

Cooperator: Marshall Grisham. Soil Type: Harco silt loam. Fertilizer: 175#/A 7-21-7.

Herbicide: Amiben, 1/2 gal/A, banded.

Soil Analysis: pH, 6.5; P₁, 29; P₂, 91; K, 224.

Carbondale, Illinois. Planting was on May 18, in an excellent seed bed. Emergence was very good and growth excellent. Dry weather for a short period in July may have reduced yields very slightly. The center two rows of four-row plots were harvested from three replications. Seed quality was above average. Yields were very good.

Cooperator:

Soil Type: Stoy silt loam. Fertilizer: 0-120-180.

Herbicide: 1 qt./A treflan--incorporated.

Soil Analysis: pH, 6.5; OM, 1.3%; P, 100; K, 360.

Crookston, Minnesota. Seed bed dry and loose. Planting a little too deep. Hard rain following planting. Only fair emergence. Summer rainfall adequate. Temperatures cool in late summer and early fall. Slow ripening. Excessive rainfall delayed harvest until early November.

Cooperator: L. J. Smith. Soil Type: Bearden silt loam.

Fertilizer: 50# P.

Herbicide: 3/4#/A treflan preplant; 2#/A amiben preemergence.

Soil Analysis: pH, 8.4; OM, High; P, 50#/A; K, 370#/A.

Morris, Minnesota. Excellent seed bed. Good emergence. Good weed control. Excellent early growth. Moisture adequate until mid-August. Some drought stress. Yields fairly normal for the area. Early frost (September) but soybeans were mature. Good tests.

Cooperator: D. D. Warnes. Soil Type: La Prairie loam. Fertilizer: None in 1971.

Herbicide: 3/4#/A treflan preplant; 2#/A amiben preemergence.

Soil Analysis: pH, 6.5; OM, High; P, 22#/A; K, 300#/A.

Rosemount, Minnesota. Heavy rains just after planting caused crusting. Stands only fair in Group 00 Uniform and Preliminary tests. Group 0 test not harvested because of poor stands and pod loss caused by high winds late in the season following a long, wet period. Some drought stress in August, but growth was good in general, and yield in the Group 00 tests were satisfactory.

Cooperator:

Soil Type: Waukegan silt loam.

Fertilizer: None.

Herbicide: 3/4#/A treflan preplant; 2#/A amiben preemergence. Soil Analysis: pH, 6.4; OM, Medium; P, 50#/A; K, 230#/A.

Lamberton, Minnesota. Good seed bed. Good stands. Good weed control. Generally good growing conditions, with the exception of some drought stress in August. Yields about normal for the area. Tests seemed reliable. Frost on September 18 was fairly light and probably did not greatly affect yields.

Cooperator: W. W. Nelson.
Soil Type: Nicollet clay loam.

Fertilizer: Heavy application of 0-46-0 plowed down in fall of 1970.

Herbicide: 3/4#/A treflan preplant; 2#/A amiben preemergence.

Soil Analysis: pH, 6.0; OM, High; P, 40#/A; K, 170#/A.

<u>Waseca, Minnesota</u>. Good stands. Good weed control. Good early growth. Virtually no rainfall from early July to mid-September. Yields lower than normal but still fairly respectable and reliable despite the long drought. Some Phytophthora root rot in the susceptible varieties.

Cooperator: W. E. Lueschen. Soil Type: LeSueur clay loam.

Fertilizer: 40#/A P₂O₅ and 40#/A K₂O plowed down in the fall of 1970.

Herbicide: 3/4#/A treflan preplant; 2#/A amiben preemergence.

Soil Analysis: pH, 6.4; OM, 6%; P, 73#/A; K, 300#/A.

Sutherland, Iowa. This nursery was planted May 13, with good soil moisture. Precipitation was below normal throughout the growing season. June temperatures set record highs and July set record lows, creating a temperature reversal of 4°. August was dry with precipitation less than 30% of normal. Weed control was excellent and general growth response and yield were good. This nursery was considered adequate for making strain comparison.

Cooperator: Northwest Iowa Experiment Association.

Soil Type: Primghar silt loam.

Fertilizer: None. Herbicide: Treflan.

Soil Analysis: pH, 6.6; P, 11; K, 81.

Kanawha, Iowa. The nursery was planted May 21 with good soil moisture. June temperatures averaged 5° above normal and rainfall was near normal. July and August were cooler than normal and dry. July temperatures were 5° below normal and August temperatures averaged 3° below normal. Plots were kept weed free and growth was fair. The location was considered good for making strain comparisons.

Cooperator: Northern Iowa Experimental Association.

Soil Type: Webster silty clay loam.

Fertilizer: 0-40-40. Herbicide: Treflan.

Soil Analysis: pH, 6.9; P, 40; K, 77.

Waverly, Iowa. This nursery is in northeastern Iowa on flat, Tripoli silt loam. The nursery was planted May 29. Above normal temperatures in June were followed by below normal temperatures in July and August. Normal precipitation in June was followed by dry conditions in July and August. Inadequate control of foxtail in the nursery resulted in the loss of two reps but data from the remaining two reps were considered adequate for making strain comparisons.

Cooperator: Elston Buls. Soil Type: Tripoli silt loam.

Fertilizer: None. Herbicide: Treflan.

Soil Analysis: pH, 7.1; P, 6; K, 47.

Clarence, Iowa. This nursery is located in east central Iowa. Planting was completed on May 12. Adequate moisture was available during the growing season. Temperatures were high in June and low in July and August. A hail storm in mid-July caused only minor damage. Plots were kept relatively weed free. This nursery was considered good for making strain comparisons.

Cooperator: Richard Elijah.

Soil Type: Muscatine silty clay loam.

Fertilizer: None. Herbicide: Treflan.

Sloan, Iowa. This nursery is located in west central Iowa on flat Salix silt loam. The nursery was planted May 13. Precipitation was below normal throughout the growing season. Temperatures were well above normal in June and well below normal in July and August. Growth, yield and general response were fairly good. This location was considered good for making strain comparisons.

Cooperator: George Campbell. Soil Type: Salix silt loam.

Fertilizer: None. Herbicide: Treflan.

Soil Analysis: pH, 6.2; P, 42; K, 382.

Ames, Iowa. Soil moisture was fair at planting time, May 27. Precipitation was slightly below normal in June and July. August was the driest on record with only .50 inches of precipitation. June set new records for high temperatures and July set new records for cool temperatures. August was also cool. On July 7-8 a severe wind storm with winds to 80 m.p.h. cut through the plots. Extensive bruising and breakage resulted. The plots were kept weed free. The location was considered adequate for strain comparisons.

Cooperator: Agronomy Farm, Agricultural Experiment Station.

Soil Type: Nicollet silt loam.

Fertilizer: 0-80-80.

Herbicide: Amiben broadcast.

Stuart, Iowa. This nursery is located in south central Iowa. Planting was completed on May 14. Stands were good and plots were kept weed free. Below normal precipitation persisted throughout the growing season. Temperatures were above normal in June and below normal in July and August. This location was considered adequate for making strain comparisons.

Cooperator: Eugene Kading.

Soil Type: Sharpsburg silt loam.

Fertilizer: None. Herbicide: Treflan

Soil Analysis: pH, 5.8; P, 35; K, 592.

Ottumwa, Iowa. This nursery is in southeastern Iowa on flat, productive Haig silty clay loam. The nursery was planted May 16. Temperatures were 5° above normal in June and 4° below normal in July. August temperatures were also below normal. Plots were kept weed free and growth was good. This nursery was considered good for making strain comparisons.

Cooperator: A. E. Newquist.
Soil Type: Haig silty clay loam.
Fertilizer Application: None.
Herbicide Application: Treflan.

Red Oak, Iowa. This nursery is located in southwest Iowa and is typical of the rolling terrain frequented by terraces. Drouth persisted throughout the growing season. Growth was stunted and seed set sporatic. This nursery was not considered good for making strain comparisons. No data submitted from this location.

Cooperator: Howard Jackson.
Soil Type: Marshall silt loam.
Fertilizer Applications: None.
Herbicide Application: Treflan.

Soil Analysis: pH, 6.2; P, 28; K, 467.

<u>Spickard, Missouri</u>. Planting was timely on May 13 and early season growth conditions were good. However rainfall was well below normal after midseason so yields were considerably depressed.

Cooperator:

Soil Type: Seymour silt loam.

Fertilizer: 12-48-48. Herbicide: 2#/A Amiben.

Columbia, Missouri. Planting was on May 19 in a good seedbed. The rains were well distributed but tended to be too light in late summer. However there was no severe drought stress although late season temperatures were above normal which caused maturity to be hastened.

Cooperator:

Soil Type: Mexico silt loam.

Herbicide: 2#/A Amiben.

Mt. Vernon, Missouri. Growth conditions were good throughout the growing season. The May 11 planting date was too late: in a date of planting experiment Williams yielded 64 bu/A planted in April. Weed growth was good too--morning glories were extremely abundant.

Cooperator:

Soil Type: Huntington silt loam.

Fertilizer: 25-100-100. Herbicide: Amiben + Lorax.

Portageville, Missouri. The Uniform Tests at Portageville, Missouri were grown under ideal conditions. Adequate rainfall throughout the growing season resulted little need for irrigation. Neither temperature nor rainfall was a limiting growth factor this year. The soybean cyst nematode was present in some tests, but populations were small. Moderate infections of pod mottle virus were also detected. The good weather continued throughout the fall, providing excellent harvest conditions.

Cooperator: University of Missouri.

Soil Type: Tiptonville Silt Loam and Sharkey Clay.

Fertilizer: None.

Herbicide: Treflan preemergence.

Soil Analysis: Loam--pH, 6.3; OM, 1.6; N, M; P, VH; K, H; Ca, H; Mg, H. Clay--pH, 5.3; OM, 2.4; N, M; P, VH; K, VH; Ca, H; Mg, H.

Portage la Prairie, Manitoba. The soybeans emerged evenly and grew rapidly during June. Temperatures during this month were slightly above average and moisture was adequate. Considerably below average temperatures during July slowed growth a great deal. Growth continued at a normal rate during August and September when temperatures were again somewhat above average. Moisture appeared to be adequate throughout the season. The full yield potential was probably not attained because of 5° F below average temperatures per day for July.

Cooperator: Special Crops Substation, Canada Agriculture.

Soil Type: Riverdale Silty Clay Loam.

Winnipeg, Manitoba. Precipitation during the growing period was near normal and the crop did not suffer from severe moisture stress. Temperatures were near normal for the months from May to September inclusive, except for July temperatures which were six degrees below normal. Early varieties generally outyielded late varieties; late varieties did not appear to be able to express their yield potential this year.

Cooperator: B. R. Stefansson. Soil Type: Riverdale silty clay.

Fertilizer: None. Herbicide: None.

Morden, Manitoba. The soybeans emerged unevenly and slowly as a result of seeding too deeply. Otherwise growing conditions in spring were excellent as a result of 2° F above average temperature per day in June, accompanied by two inches above average rainfall, July was cold with 4° F per day below normal in temperature. This caused rate of growth to slow down drastically. It resumed at a normal rate in August for awhile with the return of above normal temperatures. These high temperatures continued to the end of the season. However, a severe moisture shortage from mid-August on prevented yields from reaching their full potential. The beans matured well, but before we got to harvest them an early snow storm covered them to within four inches of the top. Therefore, they were not harvested.

Cooperator: Research Station, Canada Agriculture.

Soil Type: Morden Heavy Clay Loam.

Fertilizer: 300#/A of 27-14-0 ammonium phosphate.

Herbicide: 1#/A Treflan.

Fargo, North Dakota. The Uniform and Preliminary Nurseries 00, 0, and the Uniform Nursery I were planted May 7. Dryness delayed emergence until rain on May 23 and low temperatures (3.5° below normal) slowed growth after emergence. The preemergence application of Amiben inhibited plant growth and the retardation was evident throughout the growing season. Moisture stress during podfilling in August (2.1 inches of rain below normal with biggest rain less than 1/4 inch and seven days of 90° and above) considerably decreased the yield potential. An early killing frost (less than 10% chance of killing frost at that date) stopped a potentially high yielding Uniform I Nursery. Bacterial blight was present during June and probably reduced yields in the Group 00 Nurseries. No insect damage was observed.

Cooperator:

Soil Type: Fargo Clay. Fertilizer: None.

Herbicide: Amiben 2#/A.

Oakes, North Dakota. The Uniform O and I nurseries were planted May 26 when the soil temperature was 55° at the 4-inch depth. These plots were sprinkler irrigated when visually needed. Soil fertility was high. Plant growth and pod development was slowed during a cool July (4° below normal) and August. Seed quality was excellent for the Uniform O nursery, but the Uniform I nursery had smaller seed because of the killing frost on September 18. However, yields were sufficient to warrant further evaluation of soybeans as an irrigated crop for this region.

Cooperator:

Soil Type: Sandy Loam. Fertilizer: None.

Herbicide: Treflan granule at 1#/A, active.

Soil Analysis: pH, 7.3; OM, low; N, 100#/A; P, 40#/A; K, 400#/A.

Revillo, South Dakota. Total rainfall and temperatures were near normal for the year but most of the rain came in a two week period in late June and early July so much of it was lost to runoff and drouth conditions were severe by late summer. Yields were near normal for the season.

Cooperator: James Street. Soil Type: Forman Clay Loam.

Fertilizer: None.

Herbicide: Lasso Granules at 2 1/2#/A Broadcast.

Brookings, South Dakota. Temperatures were well below normal for the season but yields were near normal due to favorable moisture during almost the entire growing season.

Cooperator: Plant Science Farm, South Dakota State University.

Soil Type: Vienna Loam. Fertilizer: 0-30-40.

Herbicide: 2#/A Amiben, Preemergence.

Centerville, South Dakota. Yields were well below average for the year because of moderate to severe drought in late summer. Growing season rainfall was about four inches below normal.

Cooperator: A. O. Lunden, S. E. Research Farm, South Dakota State University.

Soil Type: Poinsett Sandy Loam.

Fertilizer: 0-40-0.

Herbicide: Lasso granules at 2 1/2#/A, Broadcast.

Elk Point, South Dakota. Very severe drought conditions in late summer caused well below average yields during 1971. Conditions were good in the spring but growing season rainfall was nearly eight inches below normal from mid June through mid September. Temperatures were near normal for the summer.

Cooperator: Forrest Fennel, Elk Point, South Dakota.

Soil Type: Haynie Silt Loam.

Fertilizer: Application on corn in 1970. Herbicide: Ramrod Granules Banded at 4#/A.

Concord, Nebraska. The 1971 growing season was characterized by excess early season moisture but extremely dry conditions from July 10 on through crop maturity. A full soil profile of water in early season plus nine inches of rain in June started the crop nicely. Early season growth was excellent. Weed control was satisfactory. Moderate summer temperatures benefited the crop in the absence of rain in July and August. The first killing frost September 19 was about two weeks ahead of normal. Varieties in the Uniform III test were still green, so yields were cut sharply.

Cooperator: Northeast Station, Concord, Nebraska.

Soil Type: Judson silt loam.

Fertilizer: None.

Herbicide: Amiben 3#/A.

Soil Analysis: pH, 6.4; OM, 2.5%; N, Medium; P, Medium; K, Very high.

Mead, Nebraska. Tests were established in good seed bed well supplied with moisture. Good emergence and stands were obtained. Moisture and temperature were near normal in June but drought conditions prevailed from late July through mid October. Temperatures were below normal in July and August. The tests were irrigated in alternate rows only on July 8 and 28 and August 18 and 27. Full season varieties probably did not receive as much water as needed under the extremely dry conditions of August and

September. Light frost occurred on September 19 and 22 that hastened maturity of early maturing types and killed leaves in tops of plants of all varieties. Killing frost (27°) occurred October 9.

Cooperator:

Soil Type: Sharpsburg Silty Clay Loam.

Fertilizer: 50 N + 60 P #/A.

Herbicide: Amiben (1#/A) + Lasso (1#/A) post planting.

Powhattan, Kansas. From May until late September precipitation was below normal. Leaf droppage and maturity was earlier than on the average. Pod set was reduced due to high temperature and seed size was reduced because of drouth and high temperature.

Cooperator: R. Sloan.

Soil Type: Grundy Silt Clay Loam. Fertilizer: 16#/A N, 48#/A P₂O₅.

Herbicide: 1#/A Treflan, preplant, 2#/A Amiben Preemerg. Soil Analysis: pH, 5.7; OM, 2.7; P, 59#/A; K, 324#/A.

Manhattan, Kansas. Early season growth (May through July) was abundant. Dry weather during August and September caused leaf droppage and maturity to occur earlier than usual.

Cooperator: C. Swallow.

Soil Type: Smoland Silty Clay.

Fertilizer: None.

Herbicide: 1#/A Treflan, Preplant, 2#/A Amiben Preemerg.

Soil Analysis: pH, 5,9; OM, 2,1%; N, 18.0 ppm; P, 44#; K, 550#; Zn, 2.3 ppm.

Manhattan, Kansas--Irrigated. Water was applied by furrow irrigation on June 28, August 12, August 17, and September 1 at 4", 3.3", 2.5" and 2.4"/acre, respectively. August and September were dry months with 1.50" of total rainfall.

Cooperator: C. Swallow.

Soil Type: Sarpy Fine Sandy Loam.

Fertilizer: 36# N, 92# P₂O₅.

Herbicide: 3/4#/A Treflan, Preplant, 2#/A Amiben Preemerg.

Soil Analysis: pH, 7.5; OM, 1.7%; N, 18.6 ppm; P, 61#/A; K, 500#/A; Zn, 3.9 ppm.

Ottawa, Kansas. Early season rains produced abundant plant growth and therefore caused severe lodging to occur. September was dry and late maturing varieties produced lower yields than early varieties.

Cooperator: C. Gruver.

Soil Type: Woodson Silt Loam.

Fertilizer: 32#/A N, 96#/A P₂O₅, 60#/A K₂O.

Herbicide: 1#/A Treflan, Preplant, 2#/A Ámiben Preemerg. Soil Analysis: pH, 6.7; OM, 2.6%; P, 18#/A; K, 262#/A.

Columbus, Kansas. Below normal but timely rainfall during June and early July resulted in excellent growth up to pod filling time. Then during July and August the plants were under considerable drought stress. The end result was average yields, tall plants, small seed, some lodging, and low quality seed. Disease or insects did not appear to affect yields.

Cooperator: Southeast Kansas Experiment Station.

Soil Type: Cherokee Silt Loam.

Fertilizer: 18-46-60 #/A before planting.

Soil Analysis: pH, 6.3; OM, 1.8; P, Med.; K, Med.

Ontario, Oregon. Stands of approximately 10 plants per foot in the group 00 nursery resulted in a high degree of lodging compared to the group 0 nursery which was uniformly thinned to a stand of six plants per foot. A severe mite infestation could not be completely contained with Kelthane applications and introduced an extra variable in yields of the later maturing varieties. May and June were cooler than normal, and early growth was slow, but July and August had sustained warm temperatures and unusually good growing weather which resulted in earlier than normal maturity and slightly higher than normal yields. Approximately 30" of water were applied with 10 furrow irrigations including a pre-plant irrigation and the final irrigation on August 20.

Cooperator: Malheur Branch Experiment Station.

Soil Type: Owyhee Silt Loam.

Fertilizer: 100#/A P₂O₅ applied fall of 1970.

Herbicide: None.

Soil Analysis: pH, 7.5; OM, 1.5%; N, medium (approx. 50#/A available NO3 nitrogen

per foot of soil with approx. 2' soil depth); P, 30#/A; K, 500+;

Ca, Adequate; Mg, Adequate.

ADA (M61-60)--Group 00

1961 -- Cross, Merit x Norman, made by J. W. Lambert at the Minnesota Agricultural Experiment Station.

1961-62 -- F, cul 127, greenhouse.

1962 -- F, cul 199, St. Paul.

1963 -- F₃ row 428.

1964 -- F, row 3791.

1965 -- F₅ row 4272, seed bulked.

1966 -- Designated II-61-60, tested in replicated 10-foot-row plots at St. Paul and Crookston.

1967 & 68 -- Tested in replicated single-rod-row plots at St. Paul, Morris, and Crookston.

1969 -- Designated M61-60, tested in regional Preliminary Test 00, in replicated combine plots at Morris and Crookston, and in multiple-short-row plots at Grand Rapids. Twenty-four progeny rows grown to initiate purification.

1969-70 -- Equal amounts of seed of 17 Phytophthora-resistant progenies bulked for small increase in Chile. Twelve pounds of seed returned.

1970 -- Tested as in 1969 except in Uniform Test 00 and an additional combine plot test at Moorhead. Seed increased to 10 bushels and turned over to Minnesota Crop Improvement Association. Minnesota Agricultural Experiment Station approved for major increase. Seed shared with North Dakota.

1971 -- Tested as in 1970. Approved by Minn. A.E.S. for naming and release to registered and certified growers in April, 1972. Name will be "Ada".

BONUS (C1474) -- Group IV

1962 -- Cross Cl266R-3, -4, -6, (Sel. from Harosoy x Cl079) x Cl253 (Sel. from Blackhawk x Harosoy) made in the greenhouse by D. T. Cooper, A. H. Probst, and K. Edmondson at the Purdue Agricultural Experiment Station, Lafayette, Indiana.

Five F, plants grown at the Purdue Agronomy Farm.

 F_2 --1332 plants grown in the fall greenhouse.

1963 -- F₃--860 plants grown in the spring greenhouse.

 F_{4} --840 plants grown at a 4" spacing in rows 38" apart at the Purdue Agronomy Farm.

 F_5 --837 plants grown in the fall greenhouse, inoculated with Phytophthora by F. A. Laviolette and K. L. Athow. 386 susceptible plants discarded, 451 resistant plants retained.

- 1964 -- F₆--451 plants grown in the spring greenhouse.
 - F₇--364 plant progenies grown in 3' rows at the Purdue Agronomy Farm.
- 1965 -- F₈--343 entries grown in a two-replicate yield trial at the Purdue Agronomy Farm. CX403-308 was the lowest yielding of 32 strains retained for further testing but ranked third in protein content and had the highest combination of protein and oil of the strains retained for additional testing.
- 1966 -- F_g grown in CX403 IVA yield trial at Evansville, Indiana. CX403-308 ranked 1 in yield, 3 in percent protein, and 1 in percent protein + oil of 32 entries in the test.
- 1967 -- F₁₀ grown in CX403 IVB-2 yield trial, a four-replicate test of 16 entries at both Worthington and Evansville, Indiana. CX403-308 ranked 3 in yield, and 1 in both protein and protein + oil content of the seed in the combined analysis. CX403-308 designated Cl474.
- 1968 -- C1474 grown in CX403 IVC test, a four-replicate test of 16 entries and in Uniform Preliminary IV at both Worthington and Evansville, Indiana. C1474 ranked 9 in yield in the combined CX403 IVC analysis and 6 and 2 in UP IV at Worthington and Evansville. Fifteen rows of breeders seed grown at Lafayette, Indiana.
- 1969 -- Cl474 grown in Uniform Test IV where it ranked 2 in yield of 12 entries tested at 27 locations. Forty-four rows of breeders seed increased at Lafayette, Indiana.
- 1970 -- C1474 grown in Uniform Test IV. 185 pounds of breeder seed increased on 9 acres at the Purdue Agronomy Farm to produce 298 bushels of recleaned seed.
- 1971 -- Seed of C1474 divided among releasing states as follows:

State	Bu. Allotment
Illinois	176
Indiana	83
Iowa	15
Nebraska	24

C1474 was named Bonus and released August 1, 1971.

COLUMBUS (KE2-7221)--Group IV

- 1959 -- Bulked F₄ seed from the cross Cl069 x Clark was received from Dr. A. H. Probst, USDA, Purdue University by Dr. E. L. Mader.
- 1959-61 -- F_4 - F_6 --Each generation was planted and harvested in bulk. Single plants were selected by Dr. Mader in F_6 .
- 1962 -- F7--Single plant selections were planted in rows at Manhattan, Kansas.
- 1963 -- F8--Yield tested at Manhattan, Kansas and increased.
- 1964 -- Fg--Entered in regional Preliminary Test IV.

1965	F ₁₀ Entered	in regional	Preliminary	Test	IVs.
------	-------------------------	-------------	-------------	------	------

1966 -- F₁₁--Increased seed and tested throughout Kansas.

1967 -- F₁₂--Increased seed and tested throughout Kansas.

1968 -- F₁₃--Seed impurities were noted and 200 single plant selections were made.

1969 -- F_{14} --Single plant rows (147) were evaluated and 28 rows were selected for further increase.

1970 -- F_{15} --Seed of the 28 selected rows were increased, yield tested at Manhattan and bulked to produce 35 bushels of seed.

Breeder seed allocations were made as follows:

State	Bu. Allotment		
Maryland	5.3		
Oklahoma	1.0		
Kansas	28.7		
	35 0		

1971 -- Publicity release was August 1, 1971, in Oklahoma and Kansas.

1972 -- Seed released to certified growers.

HARWOOD (0-378-28)--Group II

F₃ seed of the cross CX378 was supplied by A. H. Probst to J. W. Aylesworth for use in his doctoral study which was conducted at the Woodslee Soils Substation from 1963 through 1966. CX378 is a cross of L59-738 x Cl270 made at the Indiana A.E.S. L59-738 is one of three sister lines composited by the Illinois A.E.S. to produce Harosoy 63. Cl270 is an Indiana selection from Mandarin (Ottawa) x Clark. L59-738 is resistant, and Cl270 is susceptible, to Phytophthora rot.

1963 -- 2400 F₃ plants were grown; 505 were saved.

1964 -- F_3 plant to F_4 row; 51 lines (rows) saved.

1965 & 66 -- F_5 and F_6 yield test. Soil test values were very high for phosphorus and potassium and high for calcium with a pH of 6.3. Each year 300 lbs. of 5-20-10 fertilizer was applied.

-- 10 lines transferred to Harrow and Phytophthora rot tests run by Jerry H. Haas.

DC2-28 which had yielded 57 bushels per acre in 1965-66 compared to 43 for Harosoy 63, was resistant.

DC2-28 was designated 0-378-28 and entered into the U. S. regional Preliminary Test II.

F7 single plants were grown.

1968 -- 0-378-28 was grown in the U. S. Uniform Test II and the Ontario Soybean Variety Test.

F7 plant to F8 row; 30 lines (rows) relatively free of split seed coats were selected.

1969

-- 0-378-28 was grown in the 0.S.V. Test.

A replicated test of 30 lines was grown in isolation. There was no detectable variation in maturity; the 30 lines were harvested in bulk as breeder seed.

The Ontario Soybean Committee at its February 26, 1969, meeting voted in favor of supporting a request for licensing of 0-378-28. Publicity release 1/1/71.

Identifying characteristics-0-378-28 is resistant to Phytophthora rot. It has purple hypocotyls and flowers, grey pubescence and medium brown pods. The seed coat is dull (not glossy) and is yellow with a yellow hilum. Other characteristics which may be used in identification are high peroxidase activity in the seedcoat, a late flowering response (E_3) to a 20-hour daylength extended by cool-white fluorescent light, and a susceptible reaction to powdery mildew in the greenhouse. Harosoy 63 has these same characteristics; however, 0-378-28 can be distinguished from Harosoy 63 by its leaf phenolic pattern using thin layer chromatography.

STEELE (M59-213)--Group I

1962 -- F₃, bulked seed of F₂ plants of cross CA x 54 (Blackhawk x Harosoy obtained from A. H. Probst, Purdue University. Planted at Rosemount, Minnesota. Early plants with yellow hilum seed selected.)

1962-63 -- Fu row 219, Santiago, Chile.

1963 -- F₅ row 6082, Rosemount, seed bulked.

1964 -- Designated II-59-213 tested in replicated single 10-foot-row plots at
 St. Paul and Waseca.

1965-66 -- Tested in replicated single-rod-row plots at Waseca and Lamberton.

1967 -- Designated M59-213, tested in regional Preliminary Test I, in replicated ed combine plots at Waseca and Lamberton, and in replicated multipleshort-row plots in Faribault County. Thirty progeny rows grown to initiate purification.

1968 -- Tested as in 1967 but advanced to regional Uniform Test I. Seed from purification rows increased to 45 pounds.

-- Tested asin 1968, also in combine plots at St. Paul and Morris and in multiple-short-row plots at Clear Lake. The 45 pounds of "purified" seed turned over to Minnesota Crop Improvement Association; increased to 35 bushels. Minnesota Agricultural Experiment Station approved for major increase. Seed offered to other interested states and provinces. Discovery of nearly 1% of solid buff mutants in seed supply caused abandonment of increase of this seed lot.

1969-70 -- 200 yellow seeds planted in the greenhouse. 188 plants harvested.

1970 -- Tested as in 1969. Progenies from greenhouse plants grown in short rows at Rosemount. Rows harvested individually. 113 rows bulked for purified base. 75 pounds turned over to MCIA.

1970-71 -- MCIA sent 55 pounds of purified seed to Chile for overwinter increase.
25 bushels of clean seed returned. Seed shared with other states and

Ontario for continued maximum increase.

1971 -- Tested as in 1969 and 1970. Approved by Minnesota A.E.S. for naming and release to registered and certified seed growers in April 1972. The name will be "Steele".

SWIFT (M59-121)--Group 0

1959 -- Cross, II-54-240 x II-54-132, made by J. W. Lambert at Minnesota Agricultural Experiment Station.

II-54-240 was a selection from II-42-37 x Korean (II-42-37 was a Minn. selection from Lincoln² x Richland).

II-54-132 was a selection from M10 \times Capital (M10 was a Minn. selection from Lincoln² \times Richland).

1959-60 -- F₁, greenhouse.

1960 -- F₂ culture 74, plant 2, St. Paul.

1961 -- F₃ row 1435, Rosemount.

1962 -- F₄ row 2717, Rosemount.

1963 -- F₅ row 4553, Rosemount, seed bulked.

- 1964 -- Designated II-59-121, tested in replicated single 10-foot-row plots at St. Paul and Morris.
- 1965 & 66 -- II-59-121 tested in replicated single-rod-row plots at St. Paul and Morris.
- 1967 -- Designated M59-121, tested in regional Preliminary Test 0 and in replicated combine plots at Rosemount and Morris. Thirty progeny rows grown to initiate purification.
- 1968 -- M59-121 tested in regional Uniform Test 0, in combine plots at Rosemount,
 Morris, Waseca, and Lamberton and in multiple short-row plots at Fairmount and Big Lake. Small purified increase based on 29 of the 1967
 progeny rows.
- 1969 -- Tested as in 1968. Purified seed source increased to 120 pounds and turned over to Minnesota Crop Improvement Association for further increase.
- 1970 -- Tested as in 1968 and 1969. Increased by MCIA to 80 bushels. Approved by Minnesota Agricultural Experiment Station for maximum increase. Seed offered to other states. North Dakota, South Dakota, and Michigan accepted.
- 1971 -- Tested as in previous 3 years. Approved by Minn. AES for naming and release to registered and certified seed growers in April 1972. The name will be "Swift".

VANSOY (OAC 85) -- Group 0

Developed by Crop Science Department, Ontario Agricultural College, University of Guelph, Guelph, Ontario.

 F_1 of (strain from Lincoln x Flambeau) x Goldsoy, grown.

F₂ selections grown out as a bulk pedigree.

 F_3 , F_4 , F_5 , F_6 , F_7 lines carried from plant selections within a line.

Fg line selection increased and plant to row pure lines used to establish strain.

1965-67 -- Entered in Uniform Test 0 and Ontario Soybean Variety Tests.

Named and licensed January 16, 1970 (License No. 1241). 750 pounds breeder seed available for distribution.

WILKIN (M61-52)--Group 0

1961 -- Cross, Merit x Harosoy, made by J. W. Lambert at the Minnesota Agricultural Experiment Station.

1961-62 -- F₁ culture 78, greenhouse.

1962 -- F₂ culture 155, St. Paul.

1963 -- F₃ row 303, Rosemount.

1964 -- F₄ row 3665, Rosemount.

1965 -- F₅ row 4244, seed bulked

1966 -- Designated II-61-52, tested in replicated 10-foot-row plots at St. Paul and Crookston.

1967 & 68 -- Tested in replicated single-rod-row plots at Rosemount, Morris, and Crookston.

1969 -- Designated M61-52, tested in regional Preliminary Test 0, in replicated combine plots at Morris and Crookston, and in multiple-short-row plots at Grand Rapids. Thirty progeny rows grown to initiate purification.

1969-70 -- Equal amounts of seed of each of the 30 progenies bulked for small increase in Chile. Twelve pounds of seed returned.

1970 -- Tested as in 1969, except in Uniform Test 0 and an additional combine plot test at Moorhead. Seed increased to 12 bushels which were turned over to the Minnesota Crop Improvement Association. Approved by the Minnesota Agricultural Experiment Station for major increase. Seed shared with North Dakota.

1971 -- Tested as in 1970. Approved by Minn. AES for naming and release to registered and certified growers in April 1972. Name will be "Wilkin".

WILLIAMS (L66L-108)--Group III

The Williams soybean variety was developed in a breeding program conducted by R. L. Bernard, C. R. Cremeens, and D. A. Lindahl. The early generation selection was done on a farm near Eldorado in southern Illinois in cooperation with the farm operator Marshall Grisham.

- 1960-61 -- Cross L57-2222 (Wayne) x L57-0034 was made in the Agronomy greenhouse at Urbana. The parents were selected as the top yielding lines in the 1960 Preliminary Test III and Uniform Test IV, respectively.
- 1961 -- F₁--grown at Urbana.
- 1962-65 -- F₂ to F₅--grown at Eldorado under moderate to severe stress on seed quality and a high frequency of duddy plants. Plants were selected visually each year for lodging resistance, ripe stems, good pod set, and good seed quality.
- 1962 -- F₂--300 plants grown from this cross and 63 selected.
- 1963 -- F_3 --63 progeny rows grown and 1 or 2 plants selected from each of 23 rows.
- 1964 -- F_{μ} --43 progeny rows grown and 145 plants selected from 32 of the rows.
- 1965 -- F₅--145 progeny hills grown and 1 best plant (occasionally 2 to 4) selected from each of 75 hills. (The 145 hills were also grown at Urbana and 47 plants selected from 38 hills; only 18 coincided with the Eldorado selected hills.)
- 1966 -- F₆--86 progeny rows grown at Eldorado. There was no seed quality stress this year, and the selection of 65 rows was based on vigor, podding, and lodging resistance. Selected rows were harvested in bulk (and included L66L-108). At Urbana 47 rows were grown from the 1965 Urbana selections and 22 were selected and bulk-harvested.
- 1967 -- F₇--the 65 plus 22 selected lines were yield-tested at Eldorado and Trenton in two replications of 1 rod-row plots, divided by maturity group.

 L66L-108 ranked first in yield in its maturity group and yielded 56 bu/a versus 47 for Clark 63 at Eldorado and 66 versus 44 for Clark 63 at Trenton.
- 1968 -- F₈--L66L-108 entered in regional Preliminary Test 1II at 23 locations. Mean yield was second only to a sister line L66L-140. In addition it showed good lodging resistance, shattering resistance, seed quality, and oil content.
- 1969-70 -- F₉-F₁₀--L66L-108 entered in Uniform Test III at 34 and 31 locations. It had the highest 2-year mean yield, 1 bushel above Calland and 2 above Wayne and again showed superior lodging and shattering resistance and high seed quality and oil content.
- 1971 -- F₁₁--Reentered in Uniform Test III. Named Williams and publicity released July 20, 1971, by the state experiment stations in Illinois, Indiana, Iowa, Kansas, Maryland, Missouri, Nebraska, and Ohio.

Seed Increase

- 1968 -- F8--48 plants were harvested individually from a seed increase block.
- 1969 -- F₉--45 progeny rows selected for uniformity were composited as breeder seed producing 79 pounds of seed, of which 20 pounds were sent to W. R. Fehr to increase in Iowa.
- 1970 -- F₁₀--2 acres of breeder seed grown in cooperation with Illinois Foundation Seeds, Inc., near Champaign, produced 76 bushels and 1 acre on the Iowa State University agronomy farm produced 44 bushels. Seeds of the sister strains L66L-140 and L66L-154 were also increased in Illinois and Iowa but were discarded after the decision to release L66L-108. The distribution of the 120 bushels among participating states was as follows:

	1970	Commercial acreage of III and early IV* varieties			
	Soybean	% of	A	% of	Breeder Seed Allotted
	<u>Acreage</u> (1000)	State	Acres (1000)	Region	(bu.)
Maryland	213	41	87	. 8	1**
Ohio	2438	37	902	8.0	10
Indiana	3311	47('69)	1,556	13.9	16
Illinois	6865	49	3,364	30.0	36
Iowa	5832	31	1,808	16.1	20**
Missouri	3496	61	2,133	19.0	23**
Nebraska	812	50	406	3.6	4
Kansas	1005	95	$\frac{955}{11,211}$	$\frac{8.5}{99.9}$	$\frac{10}{120}$

^{*} Clark 63 and Cutler
** Supplied from Iowa

WYE (Md63-3303-3)--Group IV

- -- Diallel crosses made between: Adams, Anderson (FC 33.243), Lincoln, Perry, Wabash, C799, C985 (progenitor of Kent), and L46-1503.
- 1957 -- Two F₃ lines selected from each of the 28 crosses.
- 1958 -- F₄ 56 lines intermated by procedure described by Hanson in Crop Science 7, p. 99.
- 1959 -- Intercrossed seed from each line was planted and intermated. First three plants were used as females and other plants as males.
- 1959-60 -- F₁'s grown in greenhouse.
- 1960 -- F₂ Two seeds from each F₁ space planted at Beltsville and single plants harvested.
- 1961 -- F₃ Single plant rows. Rows thinned to two plants--one harvested.
- 1962 -- F_{μ} Seed increase.

- 1963 -- F₅ Homozygous line test at Indiana and Beltsville.
- 1964 -- F₆ Homozygous line test at Indiana and Beltsville and single plant selections made from Md62-3303.
- 1965 -- Plant rows including Md62-3303-3.
- -- Preliminary test (Linkwood) M62-3303-3 entered by mistake as Md63-3303-3.
- 1967 -- Preliminary test at Linkwood and Queenstown, Maryland.
- 1968 -- Mid Atlantic Group IV and regional Preliminary Test IV
- 1969 -- Uniform Test IV.
- 1970 -- Mid Atlantic Group IV (Md62-3303 entered in regional Preliminary IV).
- 1971 -- Re-entered in Uniform Test IV and released August 24, 1971, by Delaware and Maryland Agricultural Experiment Station and USDA.